


Abstract—The Internet of Things (IoT) is characterized by

many technologies, standards, tools and devices for a wide range

of application fields and often, for the end-users (makers and

developers), is hard to orientate in an equally wide range of offers

from various manufacturers. In recent years, the Bluetooth Low

Energy (BLE) communication protocol is achieving a large

portion of the market, thanks to its low-power and low-cost

orientation and its pervasiveness in mobile devices, like

smartphones. For these reasons, BLE is increasingly used in IoT-

oriented Wireless Personal Area Networks (WPAN), where a

small set of devices arranged in star topology network and

connected to a smartphone and a Wi-Fi gateway, can cover a

large number of monitoring and controlling use case scenarios.

This work presents the ST’s STM32 Open Development

Environment (ODE), a complete suite of hardware and software

tools representing a reference point for end-users willing to

create BLE-based star topology networks for a wide range of

applications. Through a simple use case in a smart home context,

it is shown how all provided tools can be used to fast prototype

applications addressing all user requirements.

Index Terms—BLE, Embedded System, Internet of Things,

MQTT, Rapid Prototyping, STM32 ODE.

I. INTRODUCTION

ROM a high-level conceptual perspective, the Internet of

Things (IoT) refers to billions of physical devices around

the world that are connected to the Internet, collecting and

sharing data. This adds a level of digital intelligence to devices

that would be otherwise dumb, enabling them to communicate

without a human being involved, and merging the digital and

physical worlds. From a low-level perspective, this concept

refers to several devices capable to connect to one another,

usually through wireless connectivity, and to the Internet to

share data across the networks.

IoT [1] is characterized by common devices that become

"smart" and collect data from sensors or other inputs. They

communicate with other IoT devices and with mobile or

cloud-based applications so that these data can be stored,

Manuscript received on January 9, 2019; revised March 5, 2019. Date of
publication April 24, 2019. Date of current version June 3, 2019.

Luigi Patrono, Piercosimo Rametta and Lorenzo Invidia are with the

Innovation Engineering Department, University of Salento, Via per
Monteroni, 73100, Lecce, Italy.

Silvio Lucio Oliva and Andrea Palmieri work in the Advanced System

Technology division of the STMicroelectronics, Lecce.
Luigi Patrono is the corresponding author (e-mail:

luigi.patrono@unisalento.it).

Digital Object Identifier (DOI): 10.24138/jcomss.v15i2.682

shared, aggregated, analyzed as usable information. It can be

easily understood that, in this context, one of the main critical

aspects for smart devices is connectivity, both from one device

to another in the same network and towards the Internet.

Short-range wireless networks are playing an increasingly

important role in the ecosystem of Internet-connected devices,

offering quality in terms of reliability, speed and security

comparable to wired links, but with the significant advantages

of flexibility, mobility, and ease of connection.

In the last years, several protocols have been defined for the

communication within Wireless Sensor Networks (WSN) [2]

and toward the Internet, each characterized by different

application scenario and performance, but no one managed to

become a general solution to satisfy the incoming

requirements of new IoT systems. Z-Wave [3], ZigBee,

Thread 802.15.4 [4][5], 6LoWPAN [6], based on the IEEE

802.15.4 [7] standard, Wi-Fi 802.11 b/g [8], RFID [9-12], are

just a few of the popular protocols and technologies designed

for WSN applications.

As the use of WSN applications is increasing, the need to

choose a particular protocol with respect to the other is

determined by certain factors such as the requirements of the

target application, size, consumption [13] [14] and duration of

the network. In the last decade, the standard that is gaining

increasing importance in this context is Bluetooth Low Energy

(BLE) [15].

Bluetooth Low Energy is the intelligent, power-friendly

version of Bluetooth wireless technology. Being able to

successfully address such requirements, its rapid adoption is

being guaranteed by the phenomenal growth in smartphones,

tablets, and mobile computing. BLE is particularly suitable for

IoT applications that do not require a continuous connection.

In fact, it allows short interruptions of the radio connection,

optimizing the use of the battery of the devices. Interference is

greatly reduced using frequency-hopping and data integrity

approaches and this makes Bluetooth connections much more

powerful than 2.4 GHz Wi-Fi, with data transmitted that is

rarely lost. BLE offers a secure and reliable connection for

smart devices, which will extend even further with the arrival

of the Bluetooth mesh network profile and changes to core

specifications that will allow a longer range.

BLE provides a clear advantage for low-cost, low-power,

and secure connectivity, with a single global standard enabling

a wide range of devices from different manufacturers to

An IoT-oriented Fast Prototyping Platform for

BLE-based Star Topology Networks

Lorenzo Invidia, Silvio Lucio Oliva, Andrea Palmieri, Luigi Patrono, and Piercosimo Rametta

F

138 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

1845-6421/06/682 © 2019 CCIS

mailto:luigi.patrono@unisalento.it

communicate, no matter where they are installed. For IoT

developers that eases many connectivity concerns, as

consumers can use their smartphone as a host for multiple

Bluetooth devices anywhere and anytime, offering services

and data to other Bluetooth devices and connection points,

including the cloud.

In developing WSN applications, various network

topologies are possible. The topology of a wireless network is

simply the way network components are arranged: it describes

the physical layout of devices, routers, and gateways, as well

as the data flow paths among them. Three of the most common

wireless topologies for applications are: (i) star, (ii) mesh, and

(iii) cluster-tree or hybrid [16].

In a star topology, all individual wireless nodes

communicate directly with a central node. It is sometimes

described as a "point-to-point" or "line of sight" architecture

because each device communicates directly with the gateway.

The gateway establishes a point-to-point communication with

the peripheral nodes and transmits the received data to a local

server or a cloud server, directly or by connecting to another

network. This topology uses the least amount of power

compared to other architectures thanks to simple direct

wireless connections. However, the distance that data can be

transmitted from the wireless device to the gateway is limited

to a range of 30-100 meters. The devices in a mesh topology,

instead, can also communicate with other nodes in the network

(point-to-multipoint) using a capability called multi-hopping.

A message can “hop” from node to node to node until it

reaches the assigned gateway. The advantages of mesh over

star topology includes a longer-range distance and a decrease

in loss of data or transmission, at the expense of greater

complexity of each node. Finally, a cluster-tree topology is a

hybrid approach where wireless devices in a star topology are

clustered around routers or repeaters that communicate with

each other and the gateway in a mesh topology.

Driven by new trends, reduced costs, miniaturization and

increased functionality, low-power wireless networks are

increasingly being used in new areas of application. However,

the efficient use of new intelligent systems is hampered by the

lack of tools that allow the creation of vertical applications,

from the implementation of the firmware to the distribution of

the front-end application for the end user, whether it be a

mobile application or web dashboard [17].

Almost all products have a series of features that can

become "intelligent" and be introduced into the IoT with the

addition of sensors, connectivity and an online application for

control, management and generation of useful information.

Once a hardware device or a prototype is built, it is

necessary to develop several layers of software: a built-in

firmware, which defines the operation and allows the

communication of the device, an application (often mobile)

that becomes the user interface and a cloud platform for data

collection and processing. This work overcomes these

limitations and describes a complete suite of hardware and

software tools, proposed by the ST’s STM32 Open

Development Environment (ODE) [18], which allows the fast

prototyping of IoT applications based on the BLE as low-level

communication protocol, with nodes arranged in a star

topology, since its ease in the considered use case. We have

extended our previous work [19] with the addition of a cloud

communication built within the same ODE. The adopted suite

includes a vast set of hardware components, ranging from

several MCU chips with increasing performance, to different

versions of BLE and Wi-Fi communication interfaces, passing

through a wide set of sensor and actuator expansion boards.

All these blocks can be composed in modular prototypal

development boards. Once the hardware layer is defined,

different Integrated Development Environments (IDEs) can be

used to develop the application’s business logic, also by

exploiting examples and code snippets provided by the

supporting community of developers. A companion Cloud

Platform provides a remote endpoint to send collected data in

order to be stored, visualized and accessed by other clients

through Internet. This suite of tools provides a great flexibility

for end-users in defining their final products. In fact, once the

business logic has been implemented and all functional

requirements have been satisfied, the hardware prototype can

be finely optimized by composing one or more building blocks

to upgrade performances or downgrade costs, according to

application’s business core.

The rest of the paper is organized as follows: section II

describes the hardware and software tools provided by the

proposed platform, while section III describes how the above

components provide functionalities to fast prototype IoT

applications on star topology BLE networks. Our use case

scenario is presented in section IV to functionally validate the

whole platform. Then, a brief comparison with other

competitors’ solutions is discussed in section V. Finally,

conclusions and future works are summarized in section VI.

II. TECHNOLOGIES OVERVIEW

This Section presents a brief overview of the full suite of

tools provided by the ST’s STM32 Open Development

Environment (ODE). A short introduction of the Bluetooth

Low Energy and the MQTT protocols, which are at the base of

the communication within the wireless sensor network and

from the central node towards the Internet, is reported. Then,

the offer of hardware prototype boards is introduced, along

with the main Integrated Development Environments (IDEs)

used to rapidly prototype applications based on the described

hardware and also interact with a Cloud server (provided by

the suite) for storing and visualizing data.

A. Protocols Introduction

The Bluetooth Low Energy communication is built on two

actors: a central and a peripheral device. Just like a client-

server model, the peripheral - usually an IoT device - owns

some information needed by clients. In most cases the central

node has the resources needed to scan and start a connection

with any peripheral that is advertising information that it’s

interested in.

Peripheral data is structured by services and characteristics.

Services are used to break data up into logic entities and

L. INVIDIA et al.: AN IOT-ORIENTED FAST PROTOTYPING PLATFORM FOR BLE-BASED STAR TOPOLOGY NETWORKS 139

contain specific chunks of data called characteristics.

A characteristic provides further details about a service and

encapsulates a single data point.

After a connection has been established, the central device

starts to discover all the peripheral services and characteristics.

Then it can interact with a service by reading, writing or

subscribing to the value of its characteristics.

The BLE protocol stack is lightened compared to the

Bluetooth classic:

 The Physical Layer features three advertising channels

giving the chance to speed up the discovery of slave

devices and leaving the others for data exchange.

 The link layer defines the procedures needed for

scanning, advertising, creating and maintaining

connections with devices.

 The Attribute Protocol (ATT) creates a communication

between an Attribute Server and an Attribute Client.

Data is stored in an attribute server in the form of

“attributes” which can be discovered, read and written

by an attribute client.

 The Generic Attribute Profile (GATT) defines the way

that two devices transfer data back and forth, provides

methods to discover services/characteristics and to read

or write characteristics’ value.

 Lastly, the Generic Access Profile (GAP) defines the API

for modes (discoverable, connectable, bondable) and

roles (peripheral, central, broadcaster, observer).

A cloud connection to manage data fetched from IoT nodes

can be realized easily via the MQ Telemetry Transport

(MQTT) [20]. Based on top of the TCP/IP suite, MQTT is a

lightweight protocol specially designed for constrained

environments, low-bandwidth networks and devices with

limited performance. These features make it ideal to be used

for most IoT nodes implementation.

MQTT defers from the classic Client-Server structure,

where a client owns a direct communication to its endpoint.

The MQTT’s Publish-Subscribe model builds up a client that

broadcast some information (publisher) and one or more

clients that receive the same information (subscribers). Both

endpoints do not know about the each other existence.

The prototype of client starts from a device with an

embedded micro controller up to a server running a proper

library, making MQTT a high scalable protocol, usually

leaving a very low complexity at the client side. Furthermore,

MQTT libraries are available for a huge variety of

programming languages.

A fundamental role with MQTT is played by brokers. They

are primarily responsible for receiving, filtering and

dispatching messages, clients’ authentication and

authorization, so any client is always connected to a broker.

After a MQTT client has started a connection with a broker,

it can publish messages. Each message basically consists of a

packet id, a topic, used by the broker to forward the message

to clients who are interested in, a Quality of Service level

(QoS), which determines the delivery priority and the actual

payload. MQTT payload data is completely free of any

established format: it is up to the sender if it would to send

textual data, binary data or JSON.

In order to receive messages, a client needs to subscribe to a

broker. The subscribe message basically consists of a packet id

and a set of pairs of a topic and QoS level.

B. Prototype Boards

The ST’s STM32 ODE provides a modular hardware and

software system to easy develop low/high complex prototypes,

which can be placed rapidly in large production. It offers a

rich catalogue of products that allows a complete IoT

prototyping, from the choice of the board to other expansion

shields needed. This brings great benefits to a user or a

company who has a unique vendor for all hardware

components and the same vendor for support or technical

issues.

The STM32 ODE catalog (Table I) includes a wide range of

evaluation boards for rapid prototyping of devices for different

applications, from low power to high performance.

The STM32 Nucleo boards are available with different

ARM Cortex®-Mx cores, memory cuts (flash and RAM),

peripherals (SPI, U(S)ART, I2C, etc.) in order to meet

different needs of customers, for different scenarios, with a

competitive price.

Starting from the choice of a STM32 Nucleo board the user

can extend the features by stacking one or more ST Expansion

Boards, - e.g. environmental, motion or touch sensors, RF

links, motor controls, security components, audio management

etc. - with a scalable approach with unlimited possibilities for

an easy application development or product evaluations.

Each STM32 Nucleo is characterized by a very simple

hardware, an in-circuit debugger (ST-Link/V2-1) and several

connectors (both the Arduino™ Uno V3 and the ST morpho)

that allow quick connection with other hardware components,

a comprehensive software HAL library and examples.

The NUCLEO-L476RG [21] (part of the STM32-L476xx

series) can be taken into account to show an example of a

typical prototype board. It is based on the high-performance

ARM® Cortex®-M4 32-bit RISC core, operating at a

frequency up to 80 MHz The STM32-L476xx series embed

high-speed memories (Flash memory up to 1 Mbyte, up to 128

Kbyte of SRAM), a flexible external memory controller

(FSMC) for static memories (for devices with packages of 100

TABLE I.
STM32 MCUS PORTFOLIO

STM32

Family

ARM

Core

Freq.

(MHz)

Flash

(kB)

RAM

(kB)

F0 Cortex-M0 48 16-256 4-32

F1 Cortex-M3 24-72 16-1024 4-96

F2 Cortex-M3 120 128-1024 64-128

F3 Cortex-M4 72 16-512 16-80

F4 Cortex-M4 84-180 64-2048 32-384

F7 Cortex-M7 216 256-2048 256-512

L0 Cortex-M0+ 32 8-192 2-20

L1 Cortex-M3 32 32-512 4-80

L4 Cortex-M4 80 128-1024 64-320

L4+ Cortex-M4 120 1024-2048 640

H7 Cortex-M7 400 1024-2048 1024-1056

140 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

pins and more), a Quad SPI flash memories interface

(available on all packages) and an extensive range of enhanced

I/Os and peripherals connected to two APB buses, two AHB

buses and a 32-bit multi-AHB bus matrix. The STM32L476xx

devices feature an ultra-low-power with FlexPowerControl

guaranteeing a consume of 30 nA in Shutdown mode and 120

nA in Standby mode.

The devices offer up to three fast 12-bit ADCs (5 Mbps),

two comparators, two operational amplifiers, two DAC

channels, an internal voltage reference buffer, a low-power

RTC, two general-purpose 32-bit timer, two 16-bit PWM

timers dedicated to motor control, seven general-purpose 16-

bit timers, and two 16-bit low-power timers. The devices

support four digital filters for external sigma delta modulators

(DFSDM). They also feature standard and advanced

communication interfaces (e.g. I2C, SPI, UART).

C. Integrated Development Environment (IDE)

Most STM32 Nucleo boards are supported and integrated

into the ARM® Mbed™ online resources [22].

ARM Mbed OS is a software solution for the development

of prototypes based on the 32-bit ARM Cortex-Mx

microcontroller. Mbed makes the whole development process

much simpler, significantly reducing time and costs. In fact,

thanks to its operating system, it guarantees an abstraction

from the hardware configuration. This means that code written

on top of Mbed OS works on any board: the user can develop

and test his/her code with different boards without rewriting it.

To further help prototyping stages, Mbed provides not only the

OS, but also Mbed Enabled™ services, a debugging interface

and testing tools.

The Mbed OS developer site is a starting point where the

user can browse an extensive catalogue of Mbed-enabled

hardware for prototyping, including boards, modules or

expansion boards. From the Hardware section, the user can

browse the catalogue by Modules, Components or Boards and

filter the hardware by vendor, connectivity, interface firmware

etc. (Fig. 1). Therefore, the user is ready to implement the

application logic simply choosing the board that he/she wishes

to use and optionally selecting one or more expansion board to

add functionalities. Alternatively, the user can import sample

programs or libraries for the selected hardware directly into

the online compiler simply clicking on the import button.

The applications for the selected platform can be developed

using the ARM Mbed online IDE or an external IDE - e.g.

Keil µVision [23], IAR [24], System Workbench for STM32

[25].

The SDK includes a C/C++ software platform that consists

of high-level core libraries that provide microcontroller

networking, drivers, RTOS and runtime environment, build

tools and test and debug scripts for creating a firmware that

runs on smart devices. Moreover, Mbed provides a

components’ database that includes lot of libraries for

components and services that, connected to the

microcontrollers, build the final prototype.

D. Cloud Server Platform

IBM Watson IoT Platform [26] is the cloud solution

adopted to upload network data. By using Watson, users can

collect connected device data and perform analytics on real-

time data from the network.

The connection process is pretty simple and meets a few

requirements for communicating with Watson IoT Platform: a

communication by using HTTP or MQTT protocols and the

devices messages must conform to the Watson message

payload format.

The data management component of Watson IoT Platform

Fig. 1. The Mbed OS developer site with a catalogue of Mbed-enabled hardware

L. INVIDIA et al.: AN IOT-ORIENTED FAST PROTOTYPING PLATFORM FOR BLE-BASED STAR TOPOLOGY NETWORKS 141

includes features to enable users to take advantage of the

collection, transformation and normalization of different

formats of device data into a single logical model. This

enables them to group different devices together to create a

Thing, which is a higher value asset-based data structure, so an

application can interact with the logical model, regardless of

the data format that is used by the individual devices or

Things.

A registered mode allows the user to pair a device with the

cloud. This solution enables end-users to control and send

commands to the registered device via web interface.

E. Examples and Source Code Repository

The Mbed OS developer site makes several sections

available to help developers start coding. A quick start

example about Bluetooth Low Energy and a simple

implementation of the BLE stack by a set of APIs can be

found in conjunction with the expansion board documentation

[27]. Moreover, a MQTT setup via mbed libraries or a TCP/IP

one is available in the developer webpage [28].

The sample firmware, developed for a central node of a

BLE star-topology network and described in the following

sections, offers a rich overview of the implementations of

these technologies and an effective example of the dual mode

operation of the Bluetooth (master and slave).

The ST SensNet app (available on the app stores with the

new name ST BLE StarNet) provides the possibility to

manage and control the BLE star network through a user-

friendly graphical interface. It’s available for both Android

[29] and iOS [30] devices, and the source code is available on

GitHub along with the branch where the MEMS view and

functionality have been developed.

III. SYSTEM ARCHITECTURE

By exploiting the whole set of tools described above, it is

possible to rapidly create prototypes of applications in the IoT

context.

In order to narrow the vastity of application field, in this

work we focus on applications based on a star topology

network, applied, just as an example, in a smart home

scenario. This is not a technical limitation, since the described

hardware and software components can manage different

topology networks in several fields, but it is a discussion

choice for the sake of readability.

Fig. 2 depicts the overall architecture of our application in

such scenarios. The Wireless Personal Area Network (WPAN)

is composed of a certain number of nodes - up to 7 peripheral

nodes - arranged in a star topology. Devices with sensing

and/or actuating capabilities read or modify some physical

quantities of the surrounding environment, exchanging data

only with the Central Node. This one, has a twofold role: on

the one hand it acts as a BLE master/slave to monitor and

control the peripheral nodes or by interacting with another

BLE masters - like a smartphone -, and, on the other hand, it

acts as a Wi-Fi gateway to exchange network data with the

Cloud platform.

A custom smartphone application, acting as a BLE master,

can locally interact with the WPAN by exploiting the BLE

channel and the capability of the Central Node to act as a

master and slave at the same time. This allows the smartphone

application to pair with the Central Node - which acts as a

peripheral with respect to the smartphone -, to access the data

generated by the network or to control the nodes, while the

Fig. 2. Overall architecture of a typical application based on a BLE star topology network connected to the Cloud

142 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

Central Node keeps acting as a BLE master with respect to the

peripheral nodes of the WPAN.

On the other side, once the collected data get the Cloud

server through the Wi-Fi interface of the Central Node, they

can be stored on the platform and accessed by any connected

web client. This allows to remotely visualize data and

eventually send command to any peripheral node.

A. Technical Details

In order to realize the hardware and software architecture

illustrated above, some setup steps need to be implemented,

especially to properly configure the Central Node and the

peripheral nodes according to the application requirements.

The configuration stage starts selecting in the Mbed online

user space the hardware components for the IoT prototype and

generating the project, with the required libraries. First steps

are navigating to Hardware/Boards, filtering the results by

Target vendor and selecting the NUCLEO-L476RG board:

this will add the board’s firmware files in the compiler, simply

by clicking at the import button. At the same way, by

navigating to Hardware/Components, we select the X-

NUCLEO-IDB05A1 shield - it embeds the ST’s BLE chip -,

importing its own library [31] into the compiler. This library

implements a set of APIs that guarantee an abstraction of the

Bluetooth LE stack, making all setups and events managing an

easy stuff (Fig. 3).

Other libraries required are the MQTT [32], that gives

methods to easily connect IBM Cloud, and easy-connect

library [33]; this library gives the users the possibility to

switch between connectivity methods - e.g. Wi-Fi, Ethernet,

Cellular - simply adding a few lines to the mbed_app.json file.

The developed firmware [34] configures an STM32 Nucleo

board as the central node of the network. The central node can

act as a BLE Master, connecting up to seven peripheral nodes,

and receiving different kind of data from them, e.g.

environmental data (temperature, humidity, pressure, lux),

proximity or LED status. Moreover, the central node can act as

a BLE Slave, sending the data information, received from the

connected peripheral nodes, to an Android/iOS client (running

the ST SensNet app) via a Bluetooth Low Energy connection.

Then the master connects to the cloud via MQTT and starts to

publish network data, making nodes information accessible via

web.

IV. SYSTEM VALIDATION

As a system validation scenario, let us suppose to create an

application in a Smart Home/Ambient Assisted Living (AAL)

context. In such scenario, an environment sensor node

monitors humidity, temperature and pressure values of the

domestic environment - the room where the sensor is placed

in -; a proximity sensor can be used to check if a person

comes near or moves away from a certain place, for example

a corner in the room where a physical exercise tool is located

- i.e. an exercise bike -. Finally, a wearable sensor equipped

with inertial MEMS can be used to monitor the body motility

state of the user. This sensing infrastructure can be used to

monitor user’s lifestyle in relation to ambient parameters: for

example, it can be monitored how long the user is in a still

position during the day, how many times the user interacts

with the exercise bike to follow his/her slimming plan and

how room temperature, humidity and pressure influence (or

are affected by) user behavior. All collected data can be

accessed both locally, through a smartphone app, and

remotely through a web dashboard.

The platform described so far provides all the tools to

create and prototype such smart home environment, leaving

creativity and imagination to developers about the amount of

other possible implementations.

A. Implementation Details

Different ST development boards have been adopted to

setup the BLE star network. The Central Node hardware is

composed of an STM32 Nucleo development board (ST Part

Number: NUCLEO-L476RG), a BLE expansion board (X-

NUCLEO-IDB05A1), and a Wi-Fi expansion board (X-

NUCLEO-IDW01M1).

The BLE expansion board is based on the BlueNRG-MS RF

module [35], a very low power Bluetooth low energy

master/slave network processor, compliant with the Bluetooth

specification v4.1. It integrates a 2.4 GHz RF transceiver and a

powerful Cortex-M0 microcontroller, on which a complete

1. /* Callback when a local Attribute is written */

2. ble.gattServer().onDataWritten(AttributeModified_CB);

3. /* Callback when a peripheral node Characteristic is read */

4. ble.gattClient().onDataRead(readCharacteristicCallback);

5. /* Callback when a peripheral node Characteristic change */

6. ble.gattClient().onHVX(onNotificationCallback);

7. /* Callback when a peripheral node Descriptor is written */

8. ble.gattClient().onDataWritten(perDescriptorWrittenCallback);

9.

10.

11. /* Callback when a node disconnects to the network */

12. ble.gap().onDisconnection(disconnectionCallback);

13. /* Callback when a node connects to the network */

14. ble.gap().onConnection(connectionCallback);

Fig. 3. Events managing setup. When a callback occurs the API pass control at the lower levels of the BLE

L. INVIDIA et al.: AN IOT-ORIENTED FAST PROTOTYPING PLATFORM FOR BLE-BASED STAR TOPOLOGY NETWORKS 143

power-optimized stack for Bluetooth single mode protocol

runs, providing:

- Master, slave role support

- GAP: central, peripheral, observer or broadcaster roles

- ATT/GATT: client and server

- SM: privacy, authentication and authorization

- L2CAP

- Link Layer: AES-128 encryption and decryption

In addition, according to the Bluetooth specification v4.1

the BlueNRG-MS can support the following features through

firmware updates:

- Multiple roles simultaneously support

- Support simultaneous advertising and scanning

- Support being Slave of up to two Masters simultaneously

- Privacy V1.1

- Low Duty Cycle Directed Advertising

Ultra-low-power sleep modes and very short transition time

between operating modes result in very low average current

consumption during real operating conditions, providing very

long battery life.

In order to create the BLE network, the central node can

connect three types of peripheral nodes, which embed

different features and run three different software packages

TABLE II.
MIC-ENV NODE DESCRIPTION (FROM [19])

ST SW

package

STM32

Nucleo

ST Expansion

Boards

ST Expansion

Board Function

FP-SNS-
ALLMEMS1

Nucleo-
L476RG

X-NUCLEO-
CCA02M1

MEMS
Microphone

Nucleo-

F446RE

X-NUCLEO-

IKS01A2 / X-
NUCLEO-

IKS01A1

Motion MEMS

and
Environmental

Sensors

(temperature,
pressure,

humidity)

Nucleo-

F401RE

X-NUCLEO-

IDB05A1

BLE connectivity

TABLE III.
 PRX-ENV NODE DESCRIPTION (FROM [19])

ST SW

package
STM32

Nucleo
ST Expansion

Boards
ST Expansion

Board

Function

FP-SNS-

FLIGHT1
Nucleo-

L476RG

X-NUCLEO-

IKS01A2 / X-
NUCLEO-

IKS01A1

X-NUCLEO-
53L0A1 / X-

NUCLEO-

6180XA1

Motion MEMS

and
Environmental

Sensors

(temperature,
pressure,

humidity)

Proximity and
Ambient Light

(LUX) Sensor

Nucleo-

F401RE

X-NUCLEO-

IDB05A1

BLE

connectivity

TABLE IV.
MOT-ENV NODE DESCRIPTION (FROM [19])

ST SW

package

STM32

Nucleo

ST Expansion

Boards

ST Expansion

Board

Function

FP-SNS-

MOTENV1

Nucleo-

L053R8

Nucleo-

L476RG

X-NUCLEO-

IKS01A2/X-

NUCLEO-

IKS01A1

Motion MEMS

and

Environmental

Sensors
(temperature,

pressure,

humidity)

Nucleo-

F401RE

X-NUCLEO-

IDB05A1

BLE

connectivity

Fig. 4. MIC-ENV node (from [19])

Fig. 5. PRX-ENV node (from [19])

Fig. 6. MOT-ENV node (from [19])

144 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

[36-38]. To differentiate and describe the three nodes

according to the different exported data, they have been

named: MIC-ENV, PRX-ENV and MOT-ENV. Fig. 4-6 and

Tables II-IV show for each peripheral node the part number of

both the ST software package (freely available on st.com) and

the STM32-Nucleo and Expansion boards that can be used,

along with the indication of provided feature or the exported

data types.

In order to start the sequence of operations, the system

checks if the Wi-Fi is enabled and starts to connect the Access

Point (Fig. 7). The system configures the MQTT network and

prints on the screen the URL to manage and monitor network

data. It’s possible to encrypt these data uploaded enabling TLS

protocol (Fig. 8). Lastly the initialization of the BLE module

and some configurations are performed (Fig. 9).

The first stage sees the central node starting the discovering

process for new peripherals. When a new node with a proper

payload start advertising, a connection to it is created. Then,

the master starts looking for services and characteristics of the

connected peripherals showing their features to the user (Fig.

10).

Once at least one peripheral is connected to the central

node, the master starts to print the nodes environmental data

(Temperature, Pressure, Humidity, and Luminosity) on the

serial terminal, and these data is uploaded to the IBM cloud

every 1000 ms (Fig. 11). In the meanwhile, the central node

performs a cycle of scanning of the network for new

peripheral nodes and advertising to become visible to an

Android/iOS device running the ST SensNet app (Fig. 12a),

freely available on Google Play/App Store. When a

connection to a peripheral node is established, notifications on

that node are enabled and all data exported are shown.

The user can easily monitor the state of the network from

the main view, which displays each peripheral node connected

to the PAN (Fig. 12b). This view allows to interact with the

peripherals, enabling a notification, sending commands and

receiving data back. It is also possible to stop and restart the

scanning for new peripheral nodes.

Basically, the central node behaves in a double way: as a

master towards the peripheral nodes and as a slave with the

Android/iOS device connected to.

Some devices embed some features that provide

notifications. Examples are Wake Up (a notification that

occurs when the card is moved) or Proximity notification

(measuring the distance between an object and the node itself).

These types of notifications can be activated or deactivated by

the user and their values are displayed both in a serial terminal

running on a host attached to the central node and in the

SensNet ST application. Other notifications are provided by

the MEMS sensors as shown in Fig. 13 - i.e. the

Accelerometer, Gyroscope, Magnetometer and Sensor Fusion

algorithms.

The system keeps track of the temporary disconnection of

the nodes. The disconnection event is notified to the connected

client which disables the cell related to the disconnected node

and the user interaction (Figure 14). When the node returns

connected, the respective cell returns active and user

interaction is restored.

Fig. 7. Attempt to connect to the Wi-Fi Access Point for the central
node

Fig. 8. Setup of the MQTT channel for the central node

Fig. 9. Initialization of the BLE channel for the central node

Fig. 10. Discovery of peripheral nodes of the network

L. INVIDIA et al.: AN IOT-ORIENTED FAST PROTOTYPING PLATFORM FOR BLE-BASED STAR TOPOLOGY NETWORKS 145

 Fig. 11. Graphical user interface of the IBM Watson IoT Platform showing collected data

a) b)

Fig. 12. Screenshots of the ST SensNet smartphone app showing (a) the discovery phase and (b) data collected by each node (from [19])

146 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

V. DISCUSSION

Compared to other solution on the market - e.g. Arduino,

Espressif Systems, Adafruit -, STMicroelectronics offers a

large product catalogue as much as competitors, guaranteeing

a wide range of available components for prototyping, both

hardware and software.

A wide range of microcontroller, in terms of different

computing performances, memory cuts and/or power

consumptions, allows users to keep the right one for their

needs, therefore the right development board that matches the

kind of prototype they aim to achieve.

Other competitor’s hardware solutions provide only a few

or a single board in order to satisfy a larger set of

implementations, so the ST ones provide greater flexibility.

Concerning the expansions, ST arises as a unique vendor for

all hardware components, in order to help users buy

expansions, easily put together all the features they want to

add to the prototype and guaranteeing them a unique reference

for support and/or technical issues.

ST hardware also features a full compatibility with different

development environments: it’s possible to develop firmware

using the STM32Cube software and tools [39], Mx, Arm

Mbed OS or Arduino IDE [40], because of the third part

hardware support - i.e. Arduino shield -.

All ST hardware is characterized by a simple design and it

is production-oriented, thus guaranteeing a fast optimization of

prototypes to make them easily and rapidly in large

production, saving time to manufacturers or companies.

This work provides both makers and professional

developers with all information about the hardware and

software tools available on the market nowadays, identifies a

fast and affordable solution for the prototyping and shows how

to easy realize an IoT prototype.

The WPAN implementation, described in this paper,

matches the perfect compromise between an ultra-low power

consumption and a necessary computing capability because of

the central node complexity and requirements. Here the

NUCLEO-L476RG board, thanks to its ultra low power

features, the core Cortex-M4 running @80MHz and the

memory cuts (both in terms of flash and RAM), has been

identified and adopted for realizing the prototype.

The wide variety of platforms in the ST portfolio provides

the developers with the possibility to make the best choice

according to the particular designed application or use case,

having at the same time a ready for production device and so

greatly decreasing the time to market.

VI. CONCLUSIONS

In this paper we have extended our prototyping of WSN,

presented in the latest paper for Splitech, with the addition of a

cloud connection that allows to interact with the WSN

remotely. Also, this part is built on the ST’s STM32 Open

Development Environment (ODE). It is a complete suite of

 Fig. 13. Accelerometer data shown in the SenseNet app (from [19]) Fig. 14. A temporarily disconnected node (from [19])

L. INVIDIA et al.: AN IOT-ORIENTED FAST PROTOTYPING PLATFORM FOR BLE-BASED STAR TOPOLOGY NETWORKS 147

hardware and software tools allowing end-users to fast

prototype applications for a wide range of scenarios.

The suite is composed of (i) a wide portfolio of hardware

components, ranging from CPU modules, RF interfaces,

memory cuts, to pre-set development boards with associated

sensor/actuator expansion boards, (ii) a set of IDEs to fast

configure the firmware of the boards, including the business

logic of the application (iii) a companion Cloud platform

which allows to remotely store data collected by the WPAN,

eventually controlling end devices via Internet, and (iv) a

supporting community providing repositories and sample

codes to speed up application development.

The described system architecture and the related validation

proof-of-concept have been deliberately focused on a star

topology network for the sake of readability. Nevertheless, this

simple use case shows how such a simple kind of network can

fulfill user requirements for a wide range of application

scenarios.

The work aiming at enhancing the offer of each component

of the suite is in an ongoing phase, with a particular focus on

the implementation of the latest release of the Bluetooth Low

Energy stack allowing mesh networking.

REFERENCES

[1] Mainetti, L., Patrono, L., Vilei, A., “Evolution of wireless sensor

networks towards the Internet of Things: A survey” (2011), 2011

International Conference on Software, Telecommunications and

Computer Networks, SoftCOM 2011, art. no. 6064380, pp. 16-21.
[2] Alessandrelli, D., Mainetti, L., Patrono, L., Pellerano, G., Petracca, M.,

Stefanizzi, M.L. “Implementation and validation of an energy-efficient

MAC scheduler for WSNs by a test bed approach” (2012), 2012 20th
International Conference on Software, Telecommunications and

Computer Networks, SoftCOM 2012, art. no. 634761.

[3] Z-Wave website. http://www.z-wave.com/ (accessed December 2018)
[4] Zigbee Alliance website. http://www.zigbee.org/ (accessed December

2018).

[5] Thread Group web site. https://www.threadgroup.org/ (accessed
December 2018).

[6] IPv6 over Low power WPAN (6lowpan), https://datatracker.ietf.org/wg/

6lowpan/about/ (accessed December 2018).
[7] IEEE 802.15 WPAN™ Task Group 4 (TG4), http://www.ieee802.org/1

5/pub/TG4.html (accessed December 2018).

[8] IEEE 802.11 Wireless Local Area Networks, http://www.ieee802.org/11
/ (accessed December 2018).

[9] Calcagnini, G., Censi, F., Maffia, M., Mainetti, L., Mattei, E., Patrono,

L., Urso, E., “Evaluation of thermal and nonthermal effects of UHF
RFID exposure on biological drugs” (2012), IEEE Transactions on

Information Technology in Biomedicine, 16 (6), art. no. 6218185, pp.

1051-1057.
[10] Catarinucci, L., Colella, R., De Blasi, M., Mighali, V., Patrono, L.,

Tarricone, L., “High performance RFID tags for item-level tracing

systems” (2010), SoftCOM 2010 - International Conference on
Software, Telecommunications and Computer Networks, art. no.

5623656, pp. 21-26.

[11] Catarinucci, L., Colella, R., De Blasi, M., Patrono, L., Tarricone, L.,
“Experimental performance evaluation of passive UHF RFID tags in

electromagnetically critical supply chains” (2011), Journal of

Communications Software and Systems, 7 (2), pp. 59-70.
[12] P. Solic, Z. Blazevic, M. Skiljo, L. Patrono, R. Colella, J.J.P.C.

Rodrigues (2017), “Gen2 RFID as IoT enabler: Characterization and

performance improvement”, IEEE Wireless Communications, 24 (3),
June 2017, art. no 2402, pp. 33-39.

[13] Alessandrelli, D., Mainetti, L., Patrono, L., Pellerano, G., Petracca, M.,

Stefanizzi, M.L. “Performance evaluation of an energy-efficient MAC
scheduler by using a test bed approach” (2013), Journal of

Communications Software and Systems, 9 (1), pp. 84-96.

[14] Anchora, L., Capone, A., Mighali, V., Patrono, L., Simone, F. “A novel

MAC scheduler to minimize the energy consumption in a Wireless
Sensor Network” (2014), Ad Hoc Networks, 16, pp. 88-104.

[15] Bluetooth Special Interest Group. https://www.bluetooth.com/bluetooth-

technology/radio-versions (accessed December 2018).
[16] Studytonight.com. Types of Network Topology, https://www.studytonig

ht.com/computer-networks/network-topology-types (accessed December

2018).
[17] Mainetti, L., Mighali, V., Patrono, L., Rametta, P., Oliva, S.L., “A novel

architecture enabling the visual implementation of web of Things

applications” (2013), 2013 21st International Conference on Software,
Telecommunications and Computer Networks, SoftCOM 2013, art. no.

6671847.

[18] St.com. STM32 Open Development Environment (ODE), http://www.st.
com/content/st_com/en/products/ecosystems/stm32-open-development-

environment.html (accessed December 2018).

[19] S. L. Oliva, A. Palmieri, L Invidia, L Patrono, P. Rametta, “Rapid
Prototyping of a Star Topology Network based on Bluetooth Low

Energy Technology” (2018), 3rd International Conference on Smart and

Sustainable Technologies (SpliTech).
[20] Mqtt.org. The MQTT protocol. http://mqtt.org/ (accessed December

2018).

[21] St.com. STM32L476RG,
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-

32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-

series/stm32l4x6/stm32l476rg.html (accessed December 2018).
[22] Arm Mbed OS developer site. https://os.mbed.com/ (accessed December

2018).

[23] armKEIL. Keil µVision IDE. http://www2.keil.com/mdk5/uvision/
(accessed December 2018).

[24] IAR Systems. IAR Embedded Workbench. https://www.iar.com/iar-

embedded-workbench/ (accessed December 2018).
[25] OpenSTM32 Community. System Workbench for STM32.

http://www.openstm32.org/HomePage (accessed December 2018).

[26] IBM Cloud. Internet of Things Platform. https://console.bluemix.net/
catalog/services/internet-of-things-platform (accessed 27 April 2018).

[27] armMBED. Getting started with X-NUCLEO-IDB05A1. https://os.mbed

.com/teams/ST/code/BLE_HeartRate_IDB0XA1/ (accessed December
2018).

[28] armMBED. Cloud_IBM_MbedOS. https://os.mbed.com/teams/ST/code/
Cloud_IBM_MbedOS/ (accessed December 2018).

[29] Invidia L., ST SensNet Android mobile application, https://github.com

/lorenzoinvidia/STSensNet_Android (accessed December 2018).
[30] Invidia L., ST SensNet iOS mobile application, https://github.com

/lorenzoinvidia/STSensNet_iOS (accessed December 2018).

[31] armMBED. X_NUCLEO_IDB0XA1. https://os.mbed.com/teams/ST/co
de/X_NUCLEO_IDB0XA1/ (accessed 27 April 2018).

[32] Mapelli L., MQTT implementation. https://os.mbed.com/users/mapellil/

code/MQTT/ (accessed December 2018).
[33] armMBED. EasyConnect. https://github.com/ARMmbed/easy-connect/

(accessed December 2018).

[34] Invidia L., Central node Firmware, https://os.mbed.com/users/lorevee/
code/ble-star-mbed/ (accessed December 2018).

[35] st.com. Bluetooth Low Energy Network Processor supporting Bluetooth

4.1 core specification, http://www.st.com/content/st_com/en/products/
wireless-connectivity/bluetooth-bluetooth-low-energy/bluenrg-ms.html

(accessed December 2018).

[36] STM32 function pack for IoT node Prx-Env, https://www.st.com/en/emb
edded-software/fp-sns-flight1.html (accessed December 2018).

[37] STM32 function pack for IoT node Mic-Env, https://www.st.com/en/em

bedded-software/fp-sns-allmems1.html (accessed December 2018).
[38] STM32 function pack for IoT node Mot-Env, https://www.st.com/en/em

bedded-software/fp-sns-motenv1.html (accessed December 2018).

[39] st.com. STM32CubeMX. http://www.st.com/en/development-tools/stm3
2cubemx.html (accessed December 2018).

[40] Arduino. https://www.arduino.cc (accessed December 2018).

148 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

Luigi Patrono received his MS in Computer

Engineering from University of Lecce, Lecce, Italy,
in 1999 and PhD in Innovative Materials and

Technologies for Satellite Networks from ISUFI-

University of Lecce, Lecce, Italy, in 2003. He is an
Assistant Professor of Computer Networks and

Internet of Things at the University of Salento,

Lecce, Italy. His research interests include RFID,
EPCglobal, Internet of Things, Wireless Sensor

Networks, and design and performance evaluation

of protocols. He is Organizer Chair of the international Symposium on RFID
Technologies and Internet of Things co-sponsorized by IEEE ComSoc. He is

author of about 120 scientific papers published on international journals and

conferences and four chapters of books with international diffusion.

Piercosimo Rametta received the Master’s degree
in Computer Engineering with honors at the

University of Salento, Lecce, Italy, in 2013. His

thesis concerned the definition and implementation
of a novel mash-up tool for Wireless Sensor

Networks’ configuration. From November 2013 to

October 2018 he collaborated with IDA Lab —
IDentification Automation Laboratory at the

Department of Innovation Engineering, University

of Salento. His activity focused on the definition
and implementation of new mash-up tools for

managing smart environments based on Wireless Sensor Networks and

Internet of Things.

Lorenzo Invidia received his BA in Information
Engineering from University of Salento, Lecce,

Italy, in 2018. His thesis work in the IoT field

concerned the BLE technology, the development
of iOS applications and the prototyping of

embedded devices. He is currently attending a

master degree course in Cybersecurity at Sapienza
University of Rome.

Andrea Palmieri graduated in Informatics

Engineering at the University of Salento. He has
been working as Senior Application Development

Engineer for STMicroelectronics in Lecce (Italy)

since 2003. After an initial experience in the
multimedia and networking fields, today he is

involved in the STM32ODE (Open Development

Environment) program for the development and
the promotion of the platforms based on the

STM32 MCUs. He is a developer of the software

package for the Bluetooth Low Energy expansion
board.

Silvio Lucio Oliva graduated in Electronic

Engineering at the Polytechnic University of

Milan. He has been working as Senior Design
Architect Engineer for STMicroelectronics in

Lecce (Italy) since 2002.

After an initial experience in the multimedia and
networking fields, today he is involved in the

STM32ODE (Open Development Environment)
program for the development and the promotion of

the platforms based on the STM32 MCUs. He is a

developer of the software package for the
Bluetooth Low Energy expansion board.

L. INVIDIA et al.: AN IOT-ORIENTED FAST PROTOTYPING PLATFORM FOR BLE-BASED STAR TOPOLOGY NETWORKS 149

