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Abstract—In this paper we propose a model for the generation
of error patterns at the output of a turbo decoder using a
Context Tree based modelling technique. This model can be
used not only to generate the decoder error pattern behaviour
with little effort, avoiding simulations, but also to investigate
– with no need of performing neither a turbo code distance
spectrum analysis, nor the probabilistic characterization of log-
likelihood ratios or of the extrinsic information at a turbo
decoder output – the performance of hybrid concatenated coding
(HCC) schemes having a turbo code as component code. These
coding schemes combine the features of parallel and serially
concatenated codes and thus offer more freedom in code design. It
has been demonstrated, in fact, that HCCs can perform closer to
capacity than serially concatenated codes while still maintaining
a minimum distance that grows linearly with block length.

I. INTRODUCTION

Turbo codes, first presented in 1993 [2], which are also
known as parallel concatenated convolutional codes (PCCCs),
are now widely recognised as a highly performing class of
concatenated codes. They combine two convolutional codes
or more than two (in this latter case they are known as
Multiple Parallel Concatenated Codes (MPCCs) [3]) along
with one or more pseudorandom interleavers. In particular, the
information bits at the input of the first encoder are permuted
by the interleaver before entering the second encoder. Thus,
the codewords of the parallel concatenated code consist of
the information bits followed by the parity check bits of both
encoders.

Since their introduction, turbo codes have become the cod-
ing technique of choice in many communication and storage
systems due to their near Shannon limit error correction
capability [4]. These applications include 3GPP, Consultative
Committee for Space Data Systems (CCSDS) telemetry chan-
nel coding, worldwide interoperability for microwave access
(WiMAX), and UMTS, which require throughputs in the range
from two to several hundred Mbps.
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Due to the presence of the interleaver, the length of which
equals that of the information sequence, k, a maximum-
likelihood (ML) sequence decoder would be far too complex
for a turbo code since its complexity is related to the number
of codewords, 2k, which becomes huge just for k in the
order of some tens, i.e., for moderate or even short values
of the interleaver length. Therefore, a suboptimal decoder
was proposed in [2], that implements an iterative algorithm
which offers near-ML performance, being its central core a
Maximum A Posteriori (MAP) symbol-by-symbol decoder.

This suboptimum MAP iterative decoding allows to achieve
a performance very close to the Shannon limit. However, the
corresponding code ensembles are known to be asymptotically
bad, namely it is well known that their minimum Hamming
distance does not grow linearly with block length [5], [6]. As
a result, their minimum distance may not be sufficient to yield
very low error rates at moderate-to-high signal-to-noise ratios
(SNRs). In particular, it was shown in [7] that they exhibit a
bit-error rate floor (the term error floor, for turbo codes, refers
to the Eb/N0 region in which their bit-error rate performance
flattens [8]) due to their relatively small free distance.

On the other hand, multiple serially concatenated code
(MSCC) ensembles with three or more component encoders
can be asymptotically good. This has been shown for repeat
multiple accumulate codes in [9] and [10]. There also ex-
ist variations of standard repeat accumulate codes that are
asymptotically good [11] but are more complex to encode than
classical repeat accumulate codes. MSCCs, in general, exhibit
good error floor performance due to their large minimum
distance, but they have the drawback of converging at an SNR
further from capacity than parallel concatenated codes.

An alternative to the above schemes are hybrid concatenated
codes (HCCs), first introduced in [12]. The hybrid structure
shown in [12] includes a PCCC or turbo code Cp with
rate Rp

c = k/n1, an outer code Co with rate Ro
c = k/p,

and an inner code Ci with rate Ri
c = p/n2. This gives a

HCC with overall rate Rc = k/(n1 + n2). The analysis in
[12] is based on analytical performance bounds, based on
the input-output weight coefficients of the codes involved
in the analysis, averaged over all possible interleavers (i.e.,
performing a uniform interleaver analysis). With the objective
of designing an HCC structure, a spectral based analysis can
be found also in [13], where the distance spectrum analysis
is performed hypothesizing a rectangular interleaver, and in
[14], where it is observed that “Turbo codes inherently provide
unequal error protection, because only certain bit positions
are affected by the dominant error events, as determined by
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the interleaving mapping”. HCCs combine the features of
parallel and serially concatenated codes and thus offer more
freedom in code design. It has been demonstrated in [16],
that HCCs can be designed that perform closer to capacity
than MSCCs while still maintaining a minimum distance that
grows linearly with block length. In particular, small memory-
one component encoders are sufficient to yield asymptotically
good code ensembles for such schemes. The resulting codes
provide low complexity encoding and decoding and, in many
cases, can be decoded using relatively few iterations.

In the cited works on HCCs ([12], [13], and [14]), and
in [15], the turbo decoder output statistical characterization
is accomplished through a distance spectrum analysis, ac-
curately predicting the behavior of the iterative decoder for
large interleaving depth and for moderate to high Eb/N0,
and validated by means of simulation. Other methods of
statistical characterization of the turbo decoder output include
the probabilistic characterization of the input-output signals in
a turbo decoder, expressed using log-likelihood ratios (LLRs),
when the received signal is subject to additive white Gaussian
noise (AWGN) [17], or in more complicated communications
systems, such as cognitive relay systems [18], and the extrin-
sic information transfer (EXIT) chart analysis, allowing the
prediction of turbo cliff position and bit error rate after an
arbitrary number of iterations [19].

Even if never proposed in the literature, the turbo decoder
output could be directly modelled following the correlation
characteristics of the process given by the bit errors at the
turbo decoder output itself. This technique has the advantage
of providing a quite accurate analytical tool to get an insight
into a PCCC residual bit error probability (BER) or frame
error probability (FER) performance in any of the three regions
characterizing this performance (see Section IV, in which
this argument has been addressed), unlike, e.g., the distance
spectrum analysis, accurately predicting the behavior of the
iterative decoder for moderate to high Eb/N0, i.e., in the
error floor region, or the EXIT chart analysis, allowing the
prediction of turbo cliff position, and thus providing an insight
into a PCCC BER or FER performance in the pinch-off and
waterfall regions. To model the turbo decoder output, from
the viewpoint of the process given by the bit errors at the
turbo decoder output itself, first and second order Markov
assumptions could be hypothesized, but using these models
could constitute an excessive simplification, since the order of
the model is completely unknown. Thus, we have decided to
consider more complex models, allowing to follow better the
correlation characteristics of the process, while being possibly
easily inferable from available experimental data. A class of
models that meet these requirements are the models based on
the Context Tree (CT) [21]. They had so far found application
in data compression problems (see [22]), in equalization
problems (see [23]), and mobile channel modelling problems
(see [24]).

Using a CT based modelling technique, in this paper we
obtain a model for the generation of error patterns at the
output of a turbo decoder that can be used not only to generate
the output sequence with little cost, avoiding simulations, but
also to investigate – with no need of performing neither a

turbo code distance spectrum analysis, nor the probabilistic
characterization of LLRs or of the extrinsic information at
a turbo decoder output – the performance of HCC schemes
having a turbo code as component code (see, for instance,
[25] and [26]).

This paper is organised as follows: in Section II we recall
some basic concepts of the principal Markov assumptions,
whereas in Sections II-A and II-B we give the definition of
the Context Tree (CT) and the description of the Context
Tree Pruning (CTP) algorithm, on which our modelling is
based, respectively. In Section III-A we briefly review the
basic concepts of turbo codes iterative decoding, whereas in
Section III-B we show the application of the CTP algorithm to
a turbo decoder output, presenting a model for the generation
of error sequences with the same statistical characteristics as
those output from a turbo decoder. In Section IV we show
the resulting model, considering a particular turbo code with
given rate, states number and interleaver length. In Section V,
to validate the model, we show that it is well suited to represent
the error patterns at the output of a turbo decoder, through the
performance analysis of a serial concatenated scheme having
the turbo code considered in the previous section as inner
code. This analysis shows a very good agreement between
the performance of the fitted model and simulation results.
Finally, Section VI states our conclusions.

II. MODELLING ERROR STATISTICS

In probability theory and statistics, the term Markov prop-
erty refers to the memoryless property of a stochastic process.
It is named after the Russian mathematician Andrey Markov
[20]. A stochastic process has the Markov property if the
conditional probability distribution of future states of the
process (conditional on both past and present states) depends
only upon the present state, not on the sequence of events that
preceded it.

Given a sequence of observations (x1, x2, . . . , xn), if we
can make the simplifying assumption that the probability of
an observation at time n only depends on the observation at
time n− 1, i.e.,

P (xn|xn−1, xn−2, . . . , x1) ≈ P (xn|xn−1) (1)

we can call this assumption a first-order Markov assumption
or simply Markov assumption. We can also express the joint
probability using this assumption:

P (x1, x2, . . . , xn) ≈
n∏

i=1

P (xi|xi−1) (2)

A second order Markov assumption would have the obser-
vation at time n depend on the observations at times n − 1
and n− 2, i.e.,

P (xn|xn−1, xn−2, . . . , x1) ≈ P (xn|xn−1, xn−2) (3)

A. The Context Tree Definition

A Context Tree (CT) is a minimum parametric representa-
tion of a Markov chain. Consider a sequence with values in the
alphabet A, xn = {xk}nk=1 ∈ An, with xk ∈ A. Let P (xn)

F. BABICH et al.: ON THE ERROR STATISTICS OF TURBO DECODING FOR HYBRID CONCATENATED CODES DESIGN 203



be the probability function associating to each sequence its
probability value. Defining P (x|xn) = P (xnx)

P (xn) , let’s assume
that there exists a state function s(·):

s(xn) : An 7−→ S (4)

such that

P (x|xn) = P [x|s(xn)], ∀x ∈ A,∀xn ∈ An,∀n (5)

Let’s define this function as the suffix, or context, of the
sequence xn:

s(xn) = {xn−k}m(xn)
k=1 , 1 ≤ m(xn) ≤ n (6)

where m(xn) may not be the same value for each sequence1.
Let’s define Context Tree the couple CT: {C,Θ}, where C =

{sk}|C|k=1 and Θ = {P (x|s)}s∈C,x∈A. The CT model induces
a PCT probability function defined as:

PCT (xn) =
n−1∏
t=0

P [xt+1|s(xt)] (7)

so that it defines completely the statistical behavior of the
sequence xn.

This model can be easily represented in terms of a tree
(hence the name) as shown in Fig. 1, where A = {a, b, c}
and C = {a, ba, bb, bca, bcb, bcc, c}. Each leaf of the tree is a
context s and the bar chart within each leaf represents the set
{P (x|s)}x∈A. Note that by completing the tree in such a way
that it is balanced, by replacing each added leaf with the leaf
in the parent node, we obtain a Markov model of order equal
to the depth of the tree d.

A first-order Markov model is associated with each CT
model MCT = {SM , PM}, where SM is the space of the
states and PM is the transition matrix.

Define SM = {s′k}
|SM |
k=1 , where s′k is a set of symbols of

the alphabet such that s′k = {s′k(i)}|s
′
k|

i=1, s′k(i) ∈ A. SM must
be chosen in such a way that, first of all, it can be partitioned
as SM = ∪|C|h=1Sh, with each Sh = {s′h,n}

|Sh|
n=1 satisfying the

following condition

{s′h,n(i)}|sh|i=1 = sh, ∀n (8)

This condition means that the elements of Sh are extensions of
the suffix sh ∈ C. Furthermore, the choice of these extensions
must be made in such a way that, if we set

v = (xs′k), x ∈ A (9)

and
f(s′k, x) = {v(i)}m(v)

i=1 , 1 ≤ m(v) ≤ |v| (10)

it is2

f(s′k, x) ∈ SM , ∀k, ∀x ∈ A (11)

At this point, the PM matrix is immediately determined: in
fact, given the definition of SM ,

PM (j, k) = P (sn+1 = s′k|sn = s′j) = 0,
if @x ∈ A : f(s′j , x) = s′k

(12)

1Note that this does not define a finite state machine, as, in general,
it may not be true that there exists a function f such that s(xn+1) =
f [s(xn), xn+1].

2Note that, in fact, a Markov model is a finite state machine.

 

Fig. 1. Example of type CT model.

and
PM (j, k) = P (x̄|sl(s′j)),
if x̄ ∈ A : f(s′j , x̄) = s′k

(13)

being sl(s′j) the suffix corresponding to the partition of SM ,
Sl(s′j) 3 s′j .

It is straightforward to prove that |C| ≤ |SM | and |Θ| ≤
|PM |(|PM | − 1), where the second quantity is the minimum
number of parameters that univocally describe PM . In the case
shown in Fig. 1, SM = {a, ba, bb, bca, bcb, bcc, ca, cb, cc}.

B. The Context Tree Pruning (CTP) Algorithm

The Context Tree Pruning (CTP) algorithm (see, e.g., [24])
is the algorithm used to estimate, starting from a known
sequence x = xn, x ∈ A, called training sequence, originated
from a source with unknown properties, the CT model that
generated it. Therefore, it allows estimating a Markov model
of unknown order and is, with respect to this kind of estimate,
an optimal algorithm in the sense of complexity of the model
(model with minimum description length) [21]. Namely, given
the training sequence, the CTP algorithm is optimal in esti-
mating the best fitting CT model {C,Θ} when a maximum
order M is assigned a priori, and an immediate conversion
from this model to a Markov model is possible.

The recursive algorithm described in [21] allows to build a
complete CT of maximum depth M . It provides two rules:

1) Initialize the root with its symbol counts all zero. Re-
cursively, having built the tree, possibly incomplete, Tt
at step t (from xt, 1 ≤ t < n), read the symbol xt+1.
Follow the tree according to the sequence defined by
xtxt−1 · · ·, and increment by one the count of symbol
xt+1 for every node visited, up to the deepest node, say
xt · · ·xt−j+1;

2) if the last updated count becomes at least 2, create a
new node xt · · ·xt−j , and initialize its symbol counts to
zero, except for the symbol xt+1, whose count is set to
1: this completes the construction of the new tree Tt+1.

The basic structure of the CTP algorithm is the following:
1) Following the recursive algorithm described above, build

a complete tree of maximum depth M , chosen a priori3,

3M must be large enough to include all models of interest.
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from the training sequence x, identifying a set of pos-
sible contexts, C̃x ⊇ Cx, and estimating the conditional
probabilities Px(x|s), x ∈ A, s ∈ C̃x, by measuring the
relative frequency of transitions:

Px(x|s) =
nx(x, s)∑

y∈A nx(y, s)
, ∀x ∈ A, |s| ≤M (14)

with nx(x, s) :=
∑n

i=1 1[xi = a, σ(xi−1 · · ·xi−M ) =
s], where σ(·) is the suffix operator (to distinguish it
from the suffix s), and nx(s) =

∑
x∈A nx(x, s).

2) Generate the test statistics (based on Kullback-Leibler
distance D(p||q)4) for each child context node, where if
s is a father context, sy, with y ∈ A, is its child context:

∆(sy) =
∑
x∈A

nx(x, sy)log
Px(x|sy)

Px(x|s)
= nx(sy)D(sy||s)

(15)
where log(·) is the base 2 logarithm.

3) Prune the tree keeping the nodes that satisfy the condi-
tion:

∆(sy) ≥ Tp = 2(|A|+ 1) log(n+ 1) (16)

with |s| ≤ min
[

logn
log |A| ,M

]
.

4) Complete the tree in the sense that, if in a set of child
nodes of the same father node one is maintained, the
others are also maintained. In other words, if one child
of a parent is retained, then all the children of that parent
are retained. This means that if a node is retained (i.e.,
not pruned), then every node on the path from that node
to the root is retained. In this way, the set of contexts
Cx = {sk}|Cx|k=1 is defined together with the operator σ(·).

5) Define the probability system Px(xn):

Px(xn) =
n−1∏
t=0

Pxt(xt+1|st) (17)

where Pxt(a|st) may be computed as:

Pxt(a|st) =
nxt(a, st) + 1

2∑
a∈A nxt(a, st) + |A|

2

(18)

where st = σ(xt) and nxt(·) is the frequency measured
through xt.

If the source is not a CT source, when M and n are
increased towards infinity the algorithm estimates a sequence
of trees approximating the source with increasing detail (the-
oretically, a CT with infinite depth would be required).

III. MODELLING THE TURBO DECODER OUTPUT

A. The Sum-product Algorithm

The sum-product algorithm is the basic “decoding” algo-
rithm for codes on graphs. For finite cycle-free graphs, it
is finite and exact. However, because all its operations are
local, it may also be applied to graphs with cycles; then it
becomes iterative and approximate, but in coding applications

4If p(x) and q(x) are two probability functions on X , with values x ∈
X , D(p||q) is the Kullback-Leibler distance, i.e., the relative entropy [27]:

D(p||q) =
∑

x∈X p(x) log
p(x)
q(x)

= Ep{log p(X)
q(X)

}

it often works very well. It has become the standard decoding
algorithm for capacity-approaching codes, e.g., turbo codes
and Low Density Parity Check (LDPC) codes.

There are many variants and applications of the sum-
product algorithm. The most straightforward application is to a
Maximum a Posteriori (MAP) decoding. In fact, the aim of the
sum-product algorithm is to approximate MAP decoding, or
equivalently to compute the a posteriori log-likelihoods of the
individual transmitted bits given the received vector. The MAP
decoding algorithm for the constituent convolutional codes can
be implemented with the well known forward-backward or
BCJR [28] algorithm (named after its inventors: Bahl, Cocke,
Jelinek and Raviv, which is feasible in this case because these
codes have a short constraint length).

Let us consider a block or convolutional encoder described
by a trellis, and a sequence x = (x1, x2, . . . , xL) of L n-
bit codewords or symbols at its output, where xk is the
symbol generated by the encoder at time k. The corresponding
information or message input bit, uk, can take on the values
−1 or +1 with an a priori probability P (uk), from which we
can define the so-called log-likelihood ratio (LLR):

L(uk) = log
P (uk = +1)

P (uk = −1)
(19)

Given an a priori estimate on each information bit and an
LLR for each transmitted bit5, the BCJR algorithm outputs
the correct a posteriori LLR for each information bit, a real
number defined by the ratio

L(uk|y) = log
P (uk = +1|y)

P (uk = −1|y)
(20)

where it was supposed that the coded vector x, transmitted
over a memoryless additive white gaussian noise (AWGN)
channel, was received as a real vector y. The soft information
provided by L(uk|y) can then be transferred to another
decoding block, if there is one, or simply converted into a
bit value through a hard decision.

A turbo decoder consists of two single soft-in soft-out
(SISO) decoders that work iteratively. The output of the first
(upper decoder) feeds into the second to form a turbo decoding
iteration. Interleaver and deinterleaver blocks re-order data in
this process. The turbo decoding algorithm iterates between
the MAP decoders corresponding to the two constituent codes.
The received values corresponding to the systematic bits are
used to initialize the a priori LLR’s for the information bits.
One of the constituent decoders then outputs the a posteriori
LLR’s by running the BCJR algorithm, the idea being to use
these as a priori LLR’s for the other decoder. However, in
order not to form short loops in the so-called “computation
tree,” the difference between the a posteriori and the a priori
LLR’s (this is known as extrinsic information) is fed to the
other decoder as a priori LLR’s, and the same operation is
repeated over and over again. Various stopping rules are used
to decide on convergence and guard against limit-cycles (see,
e.g., [29], where their categorization into three main classes
has been addressed).

5This log-likelihood ratio is zero with equally likely input bits.
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B. Application of the CTP to the Turbo Decoder Output

It is well known that the bit errors at the output of a
turbo decoder are not independent but rather tend to group
in error bursts (see, e.g., [13] and [14]). To obtain a model
for the generation of error sequences with the same statistical
characteristics as those output from a turbo-decoder, we apply
the CTP algorithm described in Section II-B by splitting the
whole error process into two parts:

1) a binary process βi, modelling the block error process,
such that:

βi =

{
1 if the i-th data block is in error
0 otherwise (21)

where the block length is assumed equal to the inter-
leaver length and a block is in error if it presents at
least one error bit;

2) a process modelling the number of error bits j within a
block.

Consider an error sequence xn with values in the alphabet
A = GF(2), xn = {xk}nk=1 ∈ An = GF(2n), with xk ∈
GF(2). Let P (xn) be the probability function associating to
each sequence its probability value.

Let’s assume that there exists a state function f(·):

f(xn) : GF(2n) 7−→ N (22)

where N denotes the set of natural numbers. The context
z(t) of the symbol x(t), immediately following the past string
xn = x1 · · ·xn, is the class of strings (xn)′ = x′1 · · ·x′n such
that f((xn)′) = f(xn), namely, the context of x(t) is some
computable function of the past string. In other words,

P (x(t)|xn) = P [x(t)|f(xn)], ∀x ∈ GF(2),∀xn ∈ GF(2n)
(23)

and the function (22) is definable as the suffix, or context, of
the sequence xn. One way of specifying this function is by a
finite state machine as done in [21].

In order to follow the 5 steps of the CTP algorithm given
in Section II-B, first of all a complete tree of maximum depth
M , chosen a priori and large enough to include all models
of interest, has to be built from the training sequence x. The
idea is to grow two binary trees, one for the case where the
current symbol x(t), which we denote by u, has the value 0,
and the other when it has the value 1. We are interested in the
intersection of the two trees, which we actually generate in
the following way, directly applying the recursive algorithm
given in [21]:

1) Declare the context tree of the first symbol x(1) in
the string to be the 1-leaf tree T (0), where the only
node, the root, is marked with the pair of counts
(c(0, λ), c(1, λ)) = (1, 1), having defined the empty
string λ = x0 as in [21].

2) Proceeding recursively, let T (t − 1) be the last con-
structed tree with (c(0, z), c(1, z)) denoting the pair of
the counts at the generic node z. After the next symbol
u = x(t) is observed, generate the next tree T (t) as
follows: climb the tree T (t− 1), starting at the root and
taking the branch, left for 0 and right for 1, indicated
by each of the successive symbols in the past sequence

σ(x(1) · · ·x(t − 1)) = z1z2 · · ·, being σ(·), the suffix
operator, the same as that defined in [21]. For each
node z visited, increment the component count c(u, z)
by one. Continue until a node w is reached whose count
c(u,w) = 1 before the update.

3) If w is an internal node with node w0 as the left and w1
as the right successor, increment the component counts
c(u,w0) and c(u,w1) by one. Define the resulting tree
to be T (t). If, again, w is a leaf, extend the tree by
creating two new leaves w0 and w1. Assign to both
leaves the same counts: c(u,w0) = c(u,w1) = 1
and c(u′, w0) = c(u′, w1) = 0, where u′ denotes the
opposite symbol to u. Call the resulting tree T (t).

This completes the description of the recursive algorithm
called “Context” given in [21] when applied to binary se-
quences.

The basic structure of the CTP algorithm applied to binary
error sequences is the following:

1) Build a complete tree from the training sequence x
as described above, and then estimate the conditional
probabilities (23) by measuring the relative frequency
of transitions (14).

2) Generate the test statistics (15) for each child context
node.

3) Prune the tree keeping the nodes that satisfy the condi-
tion (16).

4) Complete the tree in the sense that, if one child of a
parent is retained, then all the children of that parent
are retained. This means that if a node is retained (i.e.,
not pruned), then every node on the path from that node
to the root is retained.

5) Define the probability system Px(xn) as in (17).
Applying this algorithm, first, we have analysed the proper-

ties of the binary process βi in order to investigate about blocks
interdependence: the memory of this process has been obtained
from long error sequences. Each of these can constitute the
training sequence x, which allows to evaluate a CT model
using the above described CTP algorithm. Second, we have
analysed the properties of the error bits number j within a
block.

It should be noted that, due to the nature of the CTP, as the
length N of the sequence increases, CT models of increasing
complexity may be obtained. If the source is really describable
with a CT model, then there exists an N above which the
complexity of the model gets stable, otherwise the complexity
of the model will grow indefinitely with N . This means that,
by increasing the length of the pilot sequence, the models
obtained approximate the source more accurately.

IV. THE RESULTING MODEL

The basic turbo codes are made up with two parallel con-
catenated recursive convolutional (RSC) encoders, separated
by an interleaver. The upper encoder RSC1 is a systematic
rate-1/2 recursive convolutional encoder that generates a sys-
tematic codeword which consists of the information bit uk
followed by the parity bit xk1. The lower encoder RSC2 is
a non-systematic rate-1 recursive convolutional encoder that
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Fig. 2. Turbo encoder block diagram.

generates a non-systematic codeword which consists of the
parity bit xk2 only. A typical structure of a rate-1/2 turbo code
(the whole scheme including the puncturing mechanism) and
of its rate-1/3 mother code (the whole scheme excluding the
puncturing mechanism) is shown in Fig. 2. The configuration
is assumed to be symmetrical, i.e., the constituent encoders
are assumed to have the same constraint length and generator
polynomials: this means that the rate-1 lower encoder is simply
the non-systematic version of the upper rate-1/2 encoder,
obtained eliminating from the latter the systematic bit uk.

We consider a rate-1/3, four state turbo code, obtained by
parallel concatenating one rate-1/2 systematic convolutional
code with generator polynomials (1, 5/7) in octal and its non-
systematic rate-1 version with generator polynomials (5/7)
in octal. As explained in [30], the PCCC can work in three
co-decoding configurations, namely in conjunction with con-
tinuous, trellis truncated and trellis terminated co-decoding:

1) The first alternative consists of keeping both constituent
encoders in the states they were in at the end of the
previous block and starting the encoding process of the
new block from those states. Thus, since the trellis of
each encoder will evolve in a continuous fashion, this
first operation mode is called continuous co-decoding
(see Fig. 2(a) in [30]).

2) The second alternative resets the states of both encoders
at the end of each block, so that, when the encoded
sequences of both decoders end at states different from
the zero state. Since there will be a discontinuity at the
end of each block, this second operation mode is called
truncated co-decoding (see Fig. 2(b) in [30]).

3) The third alternative, called terminated co-decoding con-
sists in terminating the constituent convolutional codes
trellises at the end of each block (see Fig. 2(c) in [30]).
Various ways for terminating the trellises have been
suggested in the literature, including ad hoc designed
interleavers [31], [32]. The simplest, yet general way
[3], adopted also in this paper, requires the transmission
of extra data symbols, corresponding to the encoded
versions of a number of information bits, for each
constituent convolutional code, equal to the constraint
length ν of the constituent convolutional codes. Thus,
the overall PCCC rate is reduced; for example, in the
case of a rate 1/3 PCCC, the new rate is N/3(N + ν).

In [30] it was shown that the performance of the truncated

encoder are significantly worse than those of the continuous
one, whereas trellis termination is only slightly worse (see Fig.
3 in [30]). However, this is not the only difference. In fact,
as it can be argued observing Fig. 2 in [30], in all cases the
information sequence is split into blocks of N bits (N being
the length of the interleaver used by the turbo code), that are
encoded by the first constituent encoder and, after interleaving,
by the second encoder. But, in the first operation mode, both
constituent encoders work in a continuous fashion, whereas in
the second, at the end of each block, both constituent encoders
are simply reset. In the third mode, finally, the operation is
similar to the second, but, instead of trellis truncation, at
the end of each block a suitably chosen sequence of bits is
appended to the information block in order to terminate the
trellises of both constituent codes.

In this paper, as said above, trellis termination has been
performed as in [3]. Given this choice, the binary process
βi modelling the block error process and described by (21),
whose properties have been analysed applying the CTP algo-
ritm described in Section III-B in order to investigate about
blocks interdependence, may be expected to be describable
through a memoryless model. However, its analysis has been
anyway performed applying the CTP algorithm in order to
give a general value to the proposed procedure, in the sense
that for the second and third PCCC co-decoding configura-
tions described above (namely, trellis truncation and trellis
termination) the binary process βi may be expected to be
describable through a memoryless model, but it may be easily
inferred that the binary process βi will not have the same
characteristics when the first PCCC co-decoding configuration
(namely, continuous co-decoding) is assumed. For simplicity
we assume that the turbo code interleaver is a random inter-
leaver. We use the iterative Maximum A Posteriori (MAP)
decoding algorithm described in [2]. The turbo-decoder is
assumed to know the final states of the constituent encoders.

A rate-k/n turbo code may be obtained from this mother
code with appropriate puncturing matrix. Consider, for in-
stance, a rate-1/2 turbo code obtained from the above men-
tioned mother code with puncturing period 2. Assume an
interleaver length L = 1024. The CTP confirms that error
blocks are independent. Thus, the binary process of the block
(of length L) successes and failures, defined by (21), can be
modelled, as expected, by means of a memoryless model:
this model gives always good statistical fit with the true data
source.

Typically, bit-error rate charts of iterative decoding schemes
can be divided into three regions (shown in Fig. 4, as far as
the turbo codes considered in [33] are concerned) [19]:

1) The region of low Eb/N0 with negligible iterative BER
reduction, which can also be referred to as the pinch-
off region, with the decoder transfer characteristics in-
tersecting at low mutual information (corresponding to
high BER) and the trajectory getting stuck.

2) The turbo cliff region (also known as waterfall region)
with persistent iterative BER reduction over many iter-
ations, which can also be referred to as the bottleneck
region, with the decoding trajectory just managing to
sneak through a narrow tunnel. Convergence toward low
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Fig. 4. Simulated BER performance for rate-1/3 turbo codes with 30 iterations
and interleaver length N on the AWGN channel. The constituent codes are
those listed in Table III(a) of [33].

BER is slow but possible, since both decoder transfer
characteristics do not intersect anymore.

3) The BER floor region for moderate to high Eb/N0,
where a rather low BER can be reached after just a few
iterations, which can also be referred to as the wide-open
region with fast convergence.

Likewise, in [19] the acronym EXIT was explained as the
opportunity to see at what Eb/N0 the decoding trajectory
succeeds in exiting the pinch-off region through the bottleneck
to converge toward low BER. For rate-1/2 PCCCs, the pinch-
off limit was shown in [19] to be at 0.69 dB, whereas we

TABLE I
BLOCK ERROR PROBABILITIES

I a b Error probability

2 0.090 0.697 3.9705× 10−1

4 0.056 1.062 1.0510× 10−2

7 0.043 1.098 2.2900× 10−3

10 0.047 0.941 1.6000× 10−3

found the bottleneck limit to fall at 2 dB, as was also shown
in [34]. Thus, since at Eb/N0 = 2 dB falls the beginning of
the BER error floor region for the rate-1/2 code considered,
this Eb/N0 was chosen in Fig. 3 to show the error number in
each wrong block, with respect to the iterations number I .

It can be observed that P (m,L), i.e., the probability of
having m errors in a wrong block of length L = 1024, depends
on I and is approximately given by:

P (m,L) = 10−(am+b) (24)

i.e., it is linear in logarithmic coordinates. The approximate
coefficients a and b have been determined by means of linear
regression curves for each iterations number I and are shown
in Table I.

As shown in Fig. 3, the probability of having m errors
in a wrong block of length L depends on I , but the linear
regression curves obtained for the different I values intersect
each other or are very close to each other for low values of the
number of errors within a wrong block m, i.e., approximately
for 0 < m < 15. Outside this interval, i.e., for m ≥ 15,
the linear regression curves obtained for I > 2 are all lower
bounded by the linear regression curve obtained for I = 2.
Thus, we can keep the latter as a good approximation of
P (m,L), ∀I , for low values of m (less than about 15), and
as a lower bound on P (m,L), ∀I , for higher m values. This
fitted model will work perfectly for I = 2, and approximately
well for I > 2 and low values of m. For higher m values, the
linear regression curve obtained for I = 2 will give a lower
bound on the bit error performance obtained for I > 2.

Keeping the focus on the error floor region, since at
Eb/N0 = 2 dB falls its beginning, with fast convergence
to rather low BER just after a few iterations, we found that
at Eb/N0 > 2 dB the error number in each wrong block,
with respect to the iterations number I , presents the same
distribution shape as that found at Eb/N0 = 2 dB, but
vertically shifted towards lower P (m,L) values.

Therefore, in conclusion, the error statistics of iteratively
decoded turbo codes may be approximated by using a gener-
ator that adopts a two level model:

1) a memoryless generator, modelling the binary process
of the length-L blocks of successes and failures;

2) an error generator uniformly distributing m errors within
each length-L block (with m chosen according to (24)).

The relative frequency of blocks in error decreases with the
iterations number I , as shown in Table I, but within the wrong
blocks the error distribution is always approximated (for lower
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m values) or lower bounded (for higher m values) by (24) with
the values of a and b selected for I = 2.

This model highlights that errors appear in bursts, but the
error densities in the bursts are very low, as may be simply
seen looking at the results reported in Fig. 3. It is a fact that
the burst characterization would require, in principle, a much
deeper analysis aimed to investigate the errors correlation
properties, but the linear regression curves we found already
provide some information in this sense. In fact, it should
be noticed that there is a close relationship between the
correlation coefficient and the slope of a regression line, since,
when using the ordinary least squares method, as done in
this case, the correlation coefficient r is the slope of the
regression line of the standardized data points, and represents
a measure of the amount of agreement between the variable m
and P (m,L). When r is positive, the correlation is positive,
which means that high values of one variable correspond to
high values of the other. Conversely, if r is negative, as in
this case, then the correlation is negative: low values of one
variable correspond to high values of the other. An important
property of r is that −1 ≤ r ≤ 1: the values r = ±1
correspond to a perfect correlation, the value r = 0 to the
absence of correlation. As may be seen from Fig. 3 and Table I,
the absolute values of the slopes of the linear regression curves
are all very small and decrease, in absolute value, with the
iterations number I . Thus, the strongest, but however weak,
correlation is encountered with I = 2 and the weakest with
I = 10. This suggests that, for AWGN channels, a Bose-
Chaudhuri-Hocquenghem (BCH) code, correcting a number of
independent bits, is sufficient to lower the BER floor typical
of turbo codes performance, instead of using a Reed-Solomon
code as in traditional concatenated schemes.

V. PERFORMANCE ANALYSIS OF A BCH-TURBO CODE
SERIAL CONCATENATION

On the basis of the statistical feature given by (24), a serial
concatenation scheme, consisting of a BCH outer code and a
turbo inner code, can be designed.

The BCH codes form a class of cyclic error-correcting
codes that are constructed using polynomials over a finite field
(also called Galois field). One of the key features of BCH
codes is that, during code design, there is a precise control
over the number of symbol errors correctable by the code.
In particular, it is possible to design binary BCH codes that
can correct multiple bit errors. Another advantage of BCH
codes is the ease with which they can be decoded, namely,
via an algebraic method known as syndrome decoding. This
simplifies the design of the decoder for these codes, using
small low-power electronic hardware.

Although the exact expression of the residual BER of the
concatenated scheme is very difficult to obtain, there is a
simple upper bound valid for a t-error-correcting BCH code of
length n [35]. The bound is given by the following expression:

Pb(e) ≤
n∑

j=t+1

min(j + t, n)

n
P (j, n) (25)
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Fig. 5. Residual bit error probability after decoding of the concatenated coding
scheme versus the error correction capability t of the BCH(1023,k) outer code,
with I = 2 iterations (∗), I = 4 iterations (◦), I = 7 iterations (+) and
I = 10 iterations (�). The solid curves are related to the performance of the
fitted model, whereas the dotted curves show simulation results.
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Fig. 6. Residual frame error probability after decoding of the concatenated
coding scheme versus the error correction capability t of the BCH(1023,k)
outer code, with I = 2 iterations (∗), I = 4 iterations (◦), I = 7 iterations
(+) and I = 10 iterations (�). The solid curves are related to the performance
of the fitted model, whereas the dotted curves show simulation results.

where P (j, n) denotes the probability that j bits out of n
are affected by error. The BCH outer code should be chosen
from the BCH codes set of length n multiple of the interleaver
length L [26] with a certain error correction capability t. Here
a set of BCH(1023, k) codes has been selected, with length n
extended to n = 1024 by adding an overall parity check bit
[36], with t ranging from 1 to 41 (and k from 648 to 1013,
correspondingly).

To validate the model, a custom software based on [37] was
employed to simulate the performances of the above described
serial concatenation scheme over an AWGN channel, assuming
a BPSK (Binary Phase Shift Keying) modulator.
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Figs. 5 and 6 show, respectively, the residual bit error prob-
ability and the residual frame error probability after decoding
of the concatenated coding scheme versus the error correction
capability t of the BCH(1024, k) outer code, with respect to
the iterations number I , at Eb/N0 = 2 dB. The solid curves
are related to the performance of the fitted model, whereas the
dotted curves show simulation results.

Since, as said in the previous section, the linear regression
curve obtained for I = 2 is a good approximation of P (m,L),
∀I , for low values of m (less than about 15), and a lower bound
on P (m,L), ∀I , for higher m values, this model will work
perfectly for I = 2, and approximately well for I > 2 for
lower m values. In fact, for I = 2, the figures highlight a very
good agreement between the true data source performance
(dotted curve) and the performance of the fitted model (solid
curve). For I > 2, the agreement between the true data source
performance and the performance of the fitted model is good
for low values of the error correction capability t, up to about
15. For t > 15, the figures highlight the fact that the true data
source performance (dotted curves) are always lower bounded
by the performance of the fitted model (solid curves).

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we proposed a model for the generation of error
sequences with the same statistical characteristics as those
output from a turbo decoder. This model is useful to avoid
the extensive use of simulation needed to generate the error
patterns at the output of a turbo decoder and to investigate the
performance of concatenated schemes having a turbo code as
inner code.

An example of the construction of this model was given,
considering a particular turbo code with given rate, states
number and interleaver length L, at a fixed value of Eb/N0

in dB.
It was shown that the error statistics of iteratively decoded

turbo codes may be approximated by using an overall two
level model generator:

1) a memoryless generator, modelling the binary process
of the length-L blocks of successes and failures,

2) an error generator uniformly distributing m errors within
each length-L block (with m chosen according to (24)).

The results show that P (m,L), i.e., the probability of
having m errors in a wrong block of length L, given by (24),
depends on I , but the linear regression curves obtained for the
different I values intersect each other or are very close to each
other for low values of m and, for higher m values, the linear
regression curves obtained for I > 2 are all lower bounded by
the linear regression curve obtained for I = 2. Thus, we have
kept the latter as a good approximation of P (m,L), ∀I , for
low values of m (less than about 15), and as a lower bound
on P (m,L), ∀I , for higher m values. This fitted model is
expected to work perfectly for I = 2, and approximately well
for I > 2 and for low values of m. For higher m values,
the linear regression curve obtained for I = 2 is expected to
give a lower bound on the bit error performance obtained for
I > 2.

To show that this model is well suited to represent the
error patterns at the output of a turbo decoder, the perfor-
mance analysis of a concatenated scheme, having the turbo-
code considered in the example as inner code, was provided.
As expected, this analysis confirms a very good agreement
between the performance of the fitted model and the simulation
results for I = 2. For I > 2, the agreement between the true
data source performance and the performance of the fitted
model was shown to be better for low values of the error
correction capability t (up to about 15). On the other hand,
for t > 15, the true data source performance (dotted curves)
were shown to be always lower bounded by the performance
of the fitted model (solid curves).

This work can be considered preparatory to the definition
of a model for the generation of error patterns at the output of
a turbo decoder (of given rate and interleaver length L) with
parameters given by the iterations number I , the states number
ν of the turbo code itself, and Eb/N0 in dB.

Moreover, the definition of a model for the generation of
error patterns at the output of a LDPC code could be of
interest, too, since recently LDPC codes were also proposed as
component codes of product code structures [38] for the next
generation digital terrestrial broadcasting transmission system
[39]. Since the main concern in these communication systems
is the need of adaptive and flexible communication techniques,
the results of [40] and [41] (based on the results obtained in
[42] and [43]), where we recently addressed the design of rate-
compatible punctured LDPC codes, may be combined with the
results of this paper to design adaptive HCC structures. This
design is useful for many practical applications and may take
advantage from the method herein described to avoid heavy
simulations and get faster results.
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