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Abstract—In contemporary digital communications design, two
major challenges should be addressed: adaptability and flexibility.
The system should be capable of flexible and efficient use of all
available spectrums and should be adaptable to provide efficient
support for the diverse set of service characteristics. These needs
imply the necessity of limit-achieving and flexible channel coding
techniques, to improve system reliability. Low Density Parity
Check (LDPC) codes fit such requirements well, since they are
capacity-achieving. Moreover, through puncturing, allowing the
adaption of the coding rate to different channel conditions with
a single encoder/decoder pair, adaptability and flexibility can be
obtained at a low computational cost. In this paper, the design of
rate-compatible puncturing patterns for LDPCs is addressed. We
use a previously defined formal analysis of a class of punctured
LDPC codes through their equivalent parity check matrices.
We address a new design criterion for the puncturing patterns
using a simplified analysis of the decoding belief propagation
algorithm, i.e., considering a Gaussian approximation for mes-
sage densities under density evolution, and a simple algorithmic
method, recently defined by the Authors, to estimate the threshold
for regular and irregular LDPC codes on memoryless binary-
input continuous-output Additive White Gaussian Noise (AWGN)
channels.

I. INTRODUCTION

The main concern in nowadays digital communications is
the need of adaptive and flexible communication techniques
[1], [2]. The request for higher efficiency, both in bandwidth
use and power consumption, furthers the need for limit-
achieving, flexible techniques of channel coding. Low Density
Parity Check (LDPC) codes fit such requirements well, and
puncturing through rate-compatible puncturing patterns can
introduce further flexibility (see [3]).

LDPC codes are a class of channel block codes, first intro-
duced in 1960 by Robert Gallager in his doctoral dissertation
[4], representing the leading edge in modern channel coding.
Due to the technical limitations of that age, LDPC codes
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were scarcely considered for almost 30 years, a part from
Tanner’s generalized LDPC definition and graphical repre-
sentation, presented in his 1981 paper [5] (which was later
called Tanner graph), and were re-invented in the mid 1990s
by MacKay [6] and Luby et al. [7]. Since it was shown that
LDPC performance can approach the Shannon limit as well
as Turbo codes, these codes were quickly included in modern
communication standards such as IEEE802.11n, 802.16e (Wi-
MAX), 10G-BaseT Ethernet, and Digital Video Broadcasting.
Recently, they were also proposed as component codes of
product code structures [8] for the next generation digital
terrestrial broadcasting transmission system [9].

There have been a number of approaches to the so called
“one-dimensional (1-D) analysis” of LDPC codes (see, e.g.,
[10], [11], and [12]), all of them based on the observation that
the probability distribution function (pdf) of the decoders log-
likelihood ratio (LLR) messages is approximately Gaussian.
This approximation is quite accurate for messages sent from
variable nodes, but becomes less accurate for messages sent
from check nodes, unless the degree distribution polynomial
ρ(x) is concentrated on a few degrees, which is verified for
regular codes and for some good irregular codes as well [13].

Despite its limits, the use of the Gaussian Approximation
(GA) in order to simplify the calculations is very useful when
an efficient and low complexity method is needed. See its
recent use, e.g., to design low rate LDPC codes in [14],
Unequal Error Protection (UEP) LDPC codes in [15], where
the authors derive a closed-form expression of the mapping
function through GA, and rate-compatible puncturing patterns
for LDPC codes in [16], [17], and [18].

There are two types of approach to rate compatibility:
code extension [19], [20] where a high-rate “daughter” code
is extended to achieve lower rates, and code puncturing.
In this paper, rate-compatible LDPC codes are obtained by
progressively puncturing a low rate LDPC mother code.

The construction of rate compatible patterns through punc-
turing may be done in lots of different ways. In [21], for in-
stance, the construction was done optimizing a family of rate-
compatible degree distributions as well as the placement of
bipartite graph edges. In the already cited [3], rate-compatible
puncturing of LDPC codes was considered deriving the density
evolution equations for the design of good puncturing degree
distributions under the Gaussian Approximation. Ha et al. also
proposed an efficient puncturing algorithm for a given mother
code in [22]. For finite length (up to several thousand symbols)
LDPC codes, Yazdani et al. constructed rate-compatible LDPC
codes using puncturing and extending [19].
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In [16], we provided a formal analysis of a class of punc-
tured LDPC codes determining their equivalent parity check
matrices, given the regular LDPC mother code parity matrix
and the puncturing pattern. In [17], we gained further insight
into this class addressing a new puncturing design criterion.
We used a Gaussian approximation for message densities
under density evolution [11], and a simple algorithmic method,
recently defined in [23], to estimate the threshold [11] for
regular and irregular LDPC codes on memoryless binary-input
continuous-output AWGN channels.

In this paper, we greatly simplify the computational com-
plexity of the algorithmic method used in [17] to estimate
the Gaussian approximated thresholds, through the results ob-
tained in [24], where, applying the result of [23] to the asymp-
totical behavior of the recurrent sequence thereby defined,
low complexity upper bounds to the exact belief-propagation
decoding thresholds have been derived. The analysis in [24]
gave rise to a simple algebraic expression of the upper bound
on irregular LDPC belief-propagation decoding thresholds
using GA, thus allowing its simple determination from the
codes parameters.

The paper is organized as follows. In the next section, we
recall the class of rate-compatible punctured codes, obtained
by puncturing a regular LDPC low rate mother code, addressed
in [16], and therein described through their equivalent parity
check matrices. Since the punctured codes of this class are
irregular, in Section III the Gaussian approximation of message
densities is recalled for irregular LDPC codes. In Section IV
we recall the simple algorithmic method, recently defined in
[23], to estimate the threshold for irregular LDPC codes on
memoryless binary-input continuous-output AWGN channels,
and, in Section V, the simple algebraic expressions of the
upper bounds on irregular LDPC belief-propagation decoding
thresholds using GA obtained in [24]. In Section VI, the
proposed puncturing design criterion is outlined and the results
of the puncturing design are presented. Finally, Section VII
summarizes the results of the paper.

II. A CLASS OF RATE-COMPATIBLE PUNCTURED LDPC
CODES

In adaptive communication systems, error correcting codes
can be required to be flexible with respect to their code rates
depending on the current channel state. Rate adaptability can
be realized with several pairs of encoders and decoders, one
pair for each desired code rate. However, this is undesirable
due to the high amount of added complexity. Rate adaptability
can also be realized at a low computational cost by puncturing
a low rate channel code, resulting in only one encoder and one
decoder.

The concept of rate-compatible puncturing has been pre-
sented for the first time in [25], where a particular family
of convolutional codes, called in the paper rate-compatible
punctured convolutional codes, is obtained by adding a rate-
compatibility restriction to the puncturing rule. This restriction
requires that the rates are organized in a hierarchy, where all
coded bits of a higher rate code are used by all lower rate
codes. In other words, the high rate codes are embedded into

the lower rate codes of the family. The two main applications
of these classes of codes are hybrid incremental ARQ/FEC
schemes [26] and unequal error protection [27] of an infor-
mation sequence.

An LDPC code can be fully represented by its Tanner graph
[5] or, equivalently, the associated parity check matrix. As
far as the Tanner graphical representation is concerned, we
assume that, when performing rate-compatible puncturing, the
Tanner graph associated with a higher rate code is always a
subgraph of all the Tanner graphs associated with lower rate
codes of the family. In [16], we provided a formal analysis of
this class of punctured LDPC codes determining the equivalent
parity matrix for a punctured code, given the mother code
parity matrix and the puncturing pattern. The puncturing of a
bit from an LDPC codeword is equivalent to the elimination
of a variable node from the correspondent Tanner graph.
Being k the degree (see [3]) of the bit to be punctured,
or equivalently, the number of check equations the bit is
involved into, the k parity check equations involving this bit
have to be eliminated from the parity matrix (or, equivalently,
in the associated Tanner graph, the k edges connecting the
corresponding variable node to the check nodes have to be
cancelled). To this end, one of its k parity check equations has
to be subtracted from the other k − 1 parity check equations
and from itself. This can be done choosing the parity equation
to be subtracted (or summed modulo-2) in k different ways,
giving origin to k different equivalent parity matrices. Here,
as in [16] and [17], to eliminate from the parity matrix the
k parity check equations involving the bit to be punctured,
we have considered the subtraction of the first parity check
equation only.

Example
Consider a (8, 4) linear block code with exactly dc = 2 1’s

in each column and dv = 4 1’s in each row, i.e., a regular
(4, 2) LDPC code with parity check matrix H:

H =


0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

 (1)

Observe that variable nodes c2, c4, c5, and c8 are connected
to check node f1 in accordance to the fact that, in the first
row of H , h12 = h14 = h15 = h18 = 1 (all others are
zero). Observe that analogous situations hold for check nodes
f2, f3, and f4, which correspond to rows 2, 3, and 4 of H ,
respectively. Note that, as follows from the fact that cHT = 0,
the bit values connected to the same check node must sum to
zero. We may also proceed along columns. For example, note
that variable node c1 is connected to check nodes f2 and f4

in accordance with the fact that, in the first column of h,
h21 = h41 = 1.

Given a codeword c = (c1, . . . , c8), puncturing the bit ci
is equivalent to subtracting one of the k = 2 parity check
equations it is involved into from matrix H , since k = 2 is the
degree of bit ci, ∀i. ci is associated with two check equations,
say fj and fl. We choose fj as the equation to subtract: this is
equivalent to modulo-2 addition of matrix rows. This results in
one all-zero row in the matrix corresponding to the punctured
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position. Since ci has degree k = 2, there are two different
equivalent “punctured” matrices, one for each of the associated
check equations fj and fl.

Assume that the c8 bit is punctured. f1 is subtracted from
f3 and from itself, resulting into the “punctured” Ĥ parity
matrix:

Ĥ =


0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 1 1 1 0
1 0 0 1 1 0 1 0

 (2)

Alternatively, f3 can be chosen and subtracted from f1

and from itself. The resulting parity matrix ˆ̂
H is completely

equivalent to Ĥ: this is easy to see in this example since the
only difference between the two matrices is having the f1 and
f3 rows swapped.

ˆ̂
H =


0 1 1 1 1 1 1 0
1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0

 (3)

III. GAUSSIAN APPROXIMATION FOR LDPC CODES

Tanner considered LDPC codes (and a generalization) and
showed how they may be represented effectively by a so-called
bipartite graph, now called Tanner graph [5]. The Tanner graph
of an LDPC code is analogous to the trellis of a convolutional
code in that it provides a complete representation of the code
and it aids in the descritpion of the decoding algorithm. A
bipartite graph is a graph (nodes connected by edges) whose
nodes may be separated into two types, and edges may only
connect two nodes of different types. The two types of nodes in
a Tanner graph are the variable nodes and the check nodes. The
Tanner graph of a code is drawn according to the following
rule: check node j is connected to variable node i whenever
element hij in H is a 1.

Under belief-propagation decoding of an LDPC code, vari-
able nodes and check nodes exchange “messages” between
each other iteratively. A check node gets messages from the
variable nodes it is connected to (“neighbours”), processes the
messages and sends the result back to its neighbouring variable
nodes. Similarly, a variable node receives messages from its
check nodes and returns the processed message back to them.
We note that each output (both of variable and check nodes)
is a function of all incoming messages, except the message
coming from the edge where the message will be sent out.
This restriction is fundamental to compute the correct marginal
a posteriori probabilities. This two-step procedure is repeated
many times. After l iterations, the variable node decodes its
associated bit based on all information obtained from its depth-
l subgraph of neighbours.

Consider a regular (dv, dc) LDPC code, being dv and dc
the number of neighbors of a variable node and of a check
node respectively, under the local tree assumption. Under this
hypothesis, the girth (i.e., the length of the shortest cycle)
is large enough so that the depth-l subgraph forms a tree.
The subgraph associated to each variable node is independent

from those of other variable nodes, and as a result, so are the
messages.

In soft-decision belief-propagation decoding, the messages
are the log-likelihood ratios (LLRs) of received bits. The
output message v of a variable node is:

v = log
(P{y|x = +1}
P{y|x = −1}

)
where x is the bit value of the node, and y is all the information
available to the node up to the present iteration. The edge
carrying the information associated to v is excluded. Similarly,
the output message u of a check node is defined as:

u = log
(P{y′|x′ = +1}
P{y′|x′ = −1}

)
where x′ is the bit value of the variable node getting the mes-
sage from the check node, and y′ is the information available
to the check node up to the present iteration, disregarding the
edge carrying u.

Consider the first step of the belief-propagation algorithm:
the variable nodes send their messages to the connected check
nodes. The message v is

v =

dv−1∑
i=0

ui

where ui, i = 1, . . . , dv − 1, are the incoming LLRs from
the neighbours of the variable node, and u0 is the observed
LLR of the output bit associated with the variable node. More
specifically, at the lth iteration, with l > 1 the message is:

v(l) = u0 +

dv−1∑
i=0

u
(l−1)
i

In the second step, the check nodes send their messages to
the variable nodes. At the lth iteration, this can be expressed
by the following “tanh rule” :

tanh
u(l)

2
=

dc−1∏
j=1

tanh
v

(l)
j

2

where vj , j = 1, . . . , dc− 1, are the incoming LLRs from the
dc− 1 neighbours of a check node, and u is the message sent
to the remaining neighbour.

This two-stage procedure, called density evolution, is used
to calculate the thresholds for belief-propagation decoding.
Those are defined as the maximum noise level such that the
probability of error tends to zero as the number of iterations
tends to infinity [11].

Irregular LDPC codes [11] are defined by specifying the
distribution of the node degrees in their Tanner graphs. In
particular, in the edge-perspective degree distribution, λi is the
fraction of edges in the Tanner graph connecting to a degree-i
variable node, and ρj is the fraction of edges connecting to
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a degree-j check node. To specify the degree distribution, the
following polynomials are defined:

λ(x) =

dl∑
i=i1

λix
i−1 (4)

ρ(x) =

dr∑
j=2

ρjx
j−1 (5)

being dl (respectively dr) the maximum variable (respectively
check) node degree.

The dl-uple {λi} and dr-uple {ρj} both add up to 1. Given
the polynomials λ(x) and ρ(x), a (λ, ρ)-LDPC code of block
length n is defined as a linear code with a Tanner graph in
n variable nodes such that the edge-perspective variable-node
degree distribution is given by λ(x) and the edge-perspective
check-node degree distribution is given by ρ(x).

Consider an irregular LDPC code with edge-perspective
degree distributions λ(x) and ρ(x). The number of edges
connecting to each node is not constant: hence, the messages a
node receives from its neighbours are a “mixture” of densities
from neighbour nodes of different degrees.

Following the analysis conducted in [11], and recalled in
[16], and applying the simple algebraic expression of the
upper bound on irregular LDPC belief-propagation decoding
thresholds using GA obtained in [24], we derive a new
puncturing design procedure for LDPC codes, providing a
computationally lower cost quality assessment to a puncturing
pattern than the one provided in [17]. For completeness and
clarity sake, this analysis is briefly recalled here so as to pro-
vide the reader with a reference to the mathematical functions
we need in the optimization of the puncturing procedure.

Denote with v the output message of a variable node
and with u the output message of a check node. Assuming
that irregular LDPC codes message distributions for AWGN
channels are approximately Gaussian, since a Gaussian is
completely specified by its mean and variance, we need
only the means and variances of u and v during iterations.
Moreover, since the variance σ2 is shown in [11] to be related
to the mean m by the relation σ2 = 2m, due to the symmetry
condition, we can keep the means only. Denote the means of
u and v by m

(l)
u and m

(l)
v at the l-th iteration, respectively.

Moreover, the LLR message u0 from the channel can be
assumed to be Gaussian with mean mu0

= 2/σ2
n and variance

4/σ2
n, where σ2

n = N0/2 is the variance of the channel noise.
For a degree-i variable node at the lth iteration, the mean

of the output yields:

m
(l)
v,i = mu0

+ (i− 1)m(l−1)
u (6)

where mu0 is the mean of u0 and m(l−1)
u is the mean of u at

the (l − 1)-th iteration.
Defining φ(x) as in Definition 1 in [11], the update rule for

an irregular code becomes:

m
(l)
u,j = φ−1

(
1−

[
1−

dl∑
i=i1

λiφ(m
(l)
v,i)

]j−1)
(7)

The output of a variable node is characterized by its mean,
which is the sum of the means of incoming densities, since
they are independent from each other. The mean m(l)

u can be
calculated by linearly combining the means m(l)

u,j :

m(l)
u =

dr∑
j=2

ρjφ
−1
(

1−
[
1−

dl∑
i=i1

λiφ
(
mu0+(i−1)m(l−1)

u

)]j−1)
(8)

Defining s = mu0
and tl = m

(l)
u , (8) may be rewritten as

tl = f(s, tl−1) (9)

where the function f(s, t) is defined, through the fj(s, t), for
0 < s <∞ and 0 ≤ t <∞ as:

fj(s, t) := φ−1
(

1−
[
1−

dl∑
i=i1

λiφ(s+ (i− 1)t)
]j−1)

(10)

f(s, t) :=

dr∑
j=2

ρjfj(s, t) (11)

IV. LOW COMPLEXITY APPROXIMATION OF THE EXACT
BELIEF-PROPAGATION DECODING THRESHOLDS

In his introduction to regular LDPC codes [4], Gallager first
noticed that these codes exhibit the so called “threshold phe-
nomenon” on binary symmetric channels (BSC), as explained
also in [11]: “as the block length tends to infinity, an arbitrarily
small bit-error probability can be achieved if the noise level is
smaller than a certain threshold”. Later Luby [7] showed that
irregular LDPC codes, performing better than regular ones,
exhibit the threshold phenomenon, too.

In [23] we presented a mathematical method to allow the
noise thresholds evaluation, exploiting a moderately complex
technique. This algorithm replaced the empirical procedure
suggested in [11] for regular codes, extending its application
to irregular codes, too. Our algorithm is based on the idea
that the problem of determining the last value such that a
recurrent sequence converges (or, equivalently, the first value
such that the sequence diverges), can be seen as a “static”
problem that can be assigned to a standard software, leading
to a significant computational simplification. This algorithm
has been derived using the quadratic degeneracy theory, thus
transforming a recurrence relation convergence problem in a
problem of mathematical analysis.

Applying the method defined in [23], we derive an approxi-
mation of the exact belief-propagation decoding thresholds by
means of the Gaussian approximation. Instead of searching
the minimum value of the parameter s = mu0 granting
the convergence of (8), we solve a problem of quadratic
degeneracy which can be assigned to a standard software.
When the second derivative ftt(s, t) is 6= 0 the problem of
quadratic degeneracy is the system of equations{

f(s, t) = t
ft(s, t) = 1

(12)

where ft(s, t) is the partial derivative of f(s, t) with respect
to t.
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The solution of (12) gives the value s∗ = m∗u0
, the minimum

s = mu0
granting the convergence of (8). Defining, in an only

formally different way from [11],

∆(s, t) := f(s, t)− t (13)

and computing its first partial derivative with respect to t,

∆t(s, t) = ft(s, t)− 1 (14)

(12) may be rewritten as:{
∆(s, t) = 0
∆t(s, t) = 0

(15)

Its solution (s∗, t∗) determines an approximation σ∗ of the
exact belief-propagation decoding threshold defined as σ∗ :=√

2
s∗ .
To find the solution of (15), an explicitly invertible approx-

imation of the function φ(x) is needed. In [11], a piecewise
defined approximation by elementary functions was given:

φ(x) ≈

{
e−0.4527 x0.86+0.0218 if 0 ≤ x ≤ 10√

π
x e−x/4

(
1− 10

7 x

)
if x > 10

(16)

which is explicitly invertible only for 0 ≤ x ≤ 10. A graph
of φ(x) for 0 ≤ x ≤ 10 may be found, e.g., in [17], where
the approximation of φ(x), called φ̃(x), and its inverse, called
φ̃−1(y) were derived using a numeric integration.

V. UPPER BOUND ON DECODING THRESHOLDS

When t is large, i.e., the probability of error is small, the
behaviour of ∆(s, t) = f(s, t)− t is given in [11] by:

∆(s, t) = s+(i1−2)t−4logλi1−4

dr∑
j=2

ρj log(j−1)+O(t−1)

(17)
where λi1 is the first non-zero coefficient of the polynomial
λ(x) and i1 is its index. Using the Jensen’s inequality:

dr∏
j=2

(j − 1)ρj ≤
dr∑
j=2

ρj(j − 1) (18)

and applying it to (17), this can be rewritten as:

∆(s, t) = s+(i1−2)t−4logλi1−4log
( dr∑
j=2

ρj(j−1)
)

+O(t−1)

(19)
Ignoring the O(t−1), and solving (15), with ∆(s, t) obtained

in (19), with respect to s, we get:

s∗ = 4logλ2 + 4log
( dr∑
j=2

(j − 1)ρj

)
(20)

Taking σ∗ =
√

2
s∗ , we get an upper bound on decoding

threshold.
This is the same result found in [13], but therein obtained

following a different way, i.e., determining the upper bound on
threshold σ∗ as the σ value satisfying the stability condition
for the BI-AWGN channel:

λ′(0)ρ′(1) < e
1

2σ2 (21)

Solving (21) with respect to σ, the following upper bound
on the threshold can be obtained:

σ∗(λ, ρ) ≤ 1√
2log(λ′(0)ρ′(1))

(22)

Being λ′(0) =
∑dl
i=i1

(i− 1)λix
i−2|x=0 = λ2 and ρ′(1) =∑dr

j=2(j − 1)ρjx
j−2|x=1 =

∑dr
j=2(j − 1)ρj , we obtain

σ∗(λ, ρ)2 ≤ 1

2log(λ2

∑dr
j=2(j − 1)ρj)

(23)

from which

s =
2

σ∗(λ, ρ)2
≥ 4log(λ2

dr∑
j=2

(j − 1)ρj) = s∗ (24)

Namely, (24) gives the same bound we obtained in (20),
following a different approach.

VI. PUNCTURING CRITERION

A. Puncturing procedure

Following and integrating the analysis in [11] where, to
optimize the degree distribution for an irregular LDPC code,
∆t = f(s, t) − t is maximized (ignoring the O(t−1) term),
an optimal design criterion for the puncturing pattern can be
derived. Specifically, ∆t depends on the punctured LDPC code
parameters s, i1, λi1 , and all ρj , where s is the threshold, λi1
is the first non-zero coefficient of the polynomial λ(x), i1 is
its index, and ρj is the j-th coefficient of ρ(x). Notice that s
depends, via (12), (11), and (10) on all λi’s and ρj’s:

s = s(λi1 , ..., λdl , ρ2, ..., ρdr ) = s(Γ) (25)

where Γ = (λi1 , ..., λdl , ρ2, ..., ρdr ) is the vector of all the
parameters, but here, instead of determining it as solution of
(15), we assume s(Γ) = s∗ given by (20) and (24), since
σ∗ =

√
2
s∗ (called σ∗Jensen in [24]) was shown in [24] to give

the tighter upper bound on threshold results.
Thus, ∆(s, t) in (17) depends on all λi’s, ρj’s, and t:

∆(s, t) = ∆(λi1 , ..., λdl , ρ2, ..., ρdr , t) (26)

and, distinguishing the variable from the parameters,

∆(s, t) = δΓ(t) = (i1 − 2)t+ qΓ (27)

where qΓ = s(Γ) − 4logλi1 − 4
∑dr
j=2 ρj log(j − 1). Notice

that, assuming s(Γ) = s∗ given by (20) and (24), instead of
determining s∗ as solution of (15), the computation of qΓ is
greatly simplified.

Using δΓ(t) as a function (of t with parameter Γ) measur-
ing the performance, the best candidate vectorial puncturing
pattern is the one with the greatest slope i1 − 2, and then the
greatest additive constant qΓ. Thus, the goal of finding the
best candidate puncturing pattern can be fulfilled through the
following steps:

1) Find the equivalent parity check matrix of the irregular
LDPC code obtained applying the candidate puncturing
pattern to the regular LDPC mother code.

2) Find its polynomials λ(x) and ρ(x) in order to determine
Γ and, from it, s(Γ), i1, and qΓ.
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3) Select the best candidate as the one maximizing δΓ(t)
as said above.

Since, as shown in [24], given an ensemble of LDPC
codes with decoding thresholds σ∗ in ascending order, the
upper bounds on them (see Table I in [24]) keep the same
order, the puncturing procedure gave the same results of the
ones obtained in [17], i.e., the same puncturing patterns were
selected by the procedure, but the computational complexity
of (27) was greatly reduced using the bounds on thresholds
we found in [24], insted of solving (15) as in [17].

B. The pattern generation algorithm

Given a rate-R0 mother code with block length n, to
attain a target rate R1, p bits must be punctured, where
p = n(1 − R0

R1
). Since the number of possible puncturing

patterns is
(n
p

)
, an exhaustive search could be feasible only for

short block lengths, but it is well known that the Shannon limit
is well approached for block lengths tending to infinity. Thus,
the proposed algorithm implements an incremental approach
choosing only one incremental punctured bit position at each
iteration.

The vectorial value Γ and, from it, s(Γ), i1, λi1 , and all ρj’s,
are computed for each puncturing position and, within each
iteration, the bit position giving place to the best choice of
∆t, as explained above, is chosen. Since only one bit position
is chosen at each iteration, and, once chosen, is kept for
the following iterations of the algorithm, this generates rate-
compatible patterns. Specifically, all possible rates between the
mother code rate and the final rate. As such, the algorithm may
not produce the optimal solution, but go through a number of
suboptimal solutions. On the other hand, these intermediate
code rates are useful for practical applications (see, e.g., [26]
and [27]). Recall that, defining the mother code rate R0 as
k
n , the obtained intermediate higher rates are k

n−1 , k
n−2 , ... ,

k
n−p = R1. It is hence sufficient to run a single instance of
the algorithm with a target rate equal to the highest desired
code rate to obtain the puncturing patterns associated with all
the possible rates in between. It is also possible to define a
puncturing pattern for a specific rate (e.g., one that is known to
have good performances) as the “starting” pattern to be further
punctured, in order to obtain a higher code rate.

C. Simulation results

A custom software based on [28] and [29] was employed
to simulate the performances of punctured LDPC codes over
an AWGN channel, assuming a BPSK (Binary Phase Shift
Keying) modulator. The belief propagation algorithm, also
called message passing or sum-product algorithm, commonly
employed for LDPC decoding, has been adopted, employing
soft decision.

When applying a puncturing pattern to a codeword, some
of the bits are removed from it according to the pattern. The
removed bits are not transmitted on the channel, resulting in a
higher code rate. The puncturing pattern has been defined by
listing the positions to be punctured. To perform puncturing,
the mother code encoder output symbols corresponding to
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Fig. 1. BER vs. Eb/N0 in dB of rate-2/3 codes with n = 1000. Curve with
circle markers: native rate-2/3 code. Curve with triangle markers: punctured
rate-2/3 code with random puncturing. Curve with star markers: punctured
rate-2/3 code with optimum puncturing.

punctured positions are simply discarded. At the receiver end,
the mother code decoder is employed “filling” the punctured
positions with “neutral” symbols1, since no information is
provided about the punctured bits. In the specific case of a
binary modulation with soft decision decoding, the input of
the channel decoder are the LLR for each bit: the “missing”
LLR values are replaced with 0. This means no information
is known about the coded bit.

In the following, the results of the simulations are shown.
The performances of the punctured codes generated with the
proposed algorithm are compared with those of randomly
generated puncturing patterns and with those of the same-rate
native codes.

Regular LDPC codes with rate R0 = 1
2 = 1 − wc

wr
have

been taken as mother codes, where wc = 3 and wr = 6
are the column and the row weights of their parity check
matrices, respectively. Each of them has been punctured to
achieve a target rate R1 = 2

3 . The rate-R1 native code used
for comparison had the same block length n1 = n− p of the
punctured code.

With a block length n = 1000, to obtain a rate-2/3 code
p = 250 bits need to be punctured. Hence, the native code
has a block length of n1 = 750. Fig. 1 reports the Bit Error
Rate (BER) vs. Eb/N0 with n = 1000 of the native code,
of the punctured rate-2/3 code with random puncturing, and
of the punctured rate-2/3 code with the proposed puncturing.
Similarly, Fig. 2 reports the Block Error Rate (BLER) vs.
Eb/N0 of the native code, of the punctured rate-2/3 code with
random puncturing, and of the punctured rate-2/3 code with
the proposed puncturing.

The results show that the proposed puncturing design pro-
cedure leads to good achievements in coding gain. The best
achievement is shown in Fig. 1, where the punctured rate-2/3

1It is always assumed that the decoder knows the locations of punctured
coded symbols.
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square markers: native rate-2/3 code. Curve with triangle markers: punctured
rate-2/3 code with random puncturing. Curve with star markers: punctured
rate-2/3 code with optimum puncturing.

code performance, obtained applying the outlined procedure,
is very close to the native rate-2/3 code performance. As far
as Fig. 2 is concerned, the same good achievements in coding
gain may be seen, but not as significant as those reported in
Fig. 1.

The performance results shown in Figs. 1 and 2 have
been obtained assuming a BPSK modulator. However, when
bandwidth is constrained, higher order modulations, such as,
e.g., quadrature PSK (QPSK), typical of most deep space
missions, may be needed, in order to more effectively trade off
power efficiency, bandwidth efficiency, and complexity [30].
For these applications, system engineers may also be interested
in knowing the performance of LDPC codes when used with
other higher order modulations, such as, e.g., M-PSK, with
M > 4, and quadrature amplitude modulation (QAM).

The performance of a code when used with a nonbinary
modulation may be approximated from its BPSK performance
by its code imperfectness, defined in [31]. First, the imper-
fectness of the code in conjunction with BPSK is determined
by measuring the difference between the code’s required bit
signal-to-noise ratio Eb/N0 to attain a given word error prob-
ability (BLER) and the minimum possible Eb/N0 required
to attain the same BLER as implied by the sphere-packing
bound2 for codes with the same block size n and code rate
R1 [31]. The imperfectness evaluated in this way may then be
applied with respect to the channel capacity curve for higher
order modulations to get an approximated performance of the
code when used in conjunction with these modulations. The
imperfectness approximation has generally been found to be
fairly accurate, to within about 0.5 dB, over a wide variety of
codes and modulations [32].

2The sphere-packing bound would be reached with equality only if the code
were a perfect code for this channel, i.e., if equal-size nonintersecting cones
could be drawn around every codeword to completely fill the 2n dimensional
space.

To reduce the complexity of this evaluation, the approxima-
tion of the channel capacity curve C(γ) for BPSK modulation
we found in [23], where γ is the symbol signal-to-noise ratio,
may be useful. In particular, in [23], considering an AWGN
channel with binary input and soft output, the channel capacity
C(γ) for BPSK modulation [33] (see also [34]), and its inverse
C−1(r), have been approximated by the following couple of
functions, one inverse of the other, with forms, respectively,

1− eu γ
w+v

( log(1− r)− v
u

) 1
w

(28)

with

u = −1.286 v = 0.01022 w = 0.9308 (29)

for which we found also the limitations for the absolute and
relative errors.

The function C1(γ) = 1−eu γ
w+v approximates C(γ) very

accurately in the monodimensional case (BPSK modulation)
even if it is not correct for γ very close to 0, due to the
positive value of the parameter v. It can be extended to the
M -dimensional case giving:

CM (γ) = M(1− eu ( γM )w+v) (30)

Opposite to the standard AWGN model, impulsive noise3 is
a non-stationary signal and may represent the main disturbing
signal, such is the case of Power Line Communications
Systems (PLC) [35]. This undesirable signal is also reported
on Digital Television [36], audio broadcasting [37], xDSL
technologies [38] as well as Underwater Acoustic systems
[39]. In the frequency range from some hundreds of kHz
up to 20MHz, the measurement of impulsive noise shows
that it exhibits a duration of some microseconds up to a few
milliseconds [40], and it could be as high as 40 dB above the
background noise [41].

As explained by the pioneer work of Middleton [42], the
modelling of impulsive noise allows to provide a realistic and
quantitative description of this kind of interference, to specify
and guide experiments for measuring its effects. Middleton’s
Class A noise model4 describes the probability density func-
tion (pdf) of impulsive noise as the linear superposition of
Gaussian functions with different variances [43]:

pX(x) =
∞∑
m=0

Ame−A

m!

exp(−x2/2σ2
m)√

2πσ2
m

(31)

with
σ2
m =

(
1 +

1

Γ

)k/A+ Γ

1 + Γ
σ2
N (32)

where the parameter A is called impulsive index. The param-
eter Γ is the background-to-impulsive noise ratio, namely, the
value of Γ gives how strong the impulsive noise is with respect
to the AWGN component [44]. The value of σ2

N = σ2
n + σ2

I

3Impulsive noise is mainly comprised by short duration noisy pulses.
This noise is caused by switching devices, channel environment, clicks from
computer keyboards, loads not synchronous with the power frequency, etc.

4Class A noise channel proposed by Middleton [43] is one of the non-
Gaussian noise channels and is currently applied to the modelling of man-
made impulsive noise channels, such as the wireless channel, the power line
channel, and so on.
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is the total power given by the contribution of the impulsive
noise power σ2

I and the AWGN noise power σ2
n.

As may be seen from (31) and (32), the statistical character-
istic of Class A noise is much different from that of Gaussian
noise, since the occurrence of the impulsive noise may cause
error bursts in data transmission. Therefore, the conventional
decoders optimized for the additive white Gaussian noise
(AWGN) channel, in general, are not suitable for Class A noise
environment. In particular, as far as LDPC codes decoding is
concerned, in the literature a number of modified sum-product
decoding algorithms suitable for this channel, called Additive
White class A Noise (AWAN) channel, may be found (see,
e.g., [45], [46], and [47]).

VII. CONCLUSIONS

This paper was focused on the search for limit-achieving
and flexible channel coding techniques. With this goal in
mind, the design of rate-compatible puncturing patterns for
LDPC codes was addressed. A low complexity performance
assessment of the puncturing patterns was presented and
formally justified, thanks to the work in [11] and to the bounds
on thresholds found in [24]. Namely, we greatly simplified
the computational complexity of the algorithmic method used
in [17] to estimate the Gaussian approximated thresholds,
through the results obtained in [24], where, applying the
results of [23] to the asymptotical behavior of the recurrent
sequence thereby defined, low complexity upper bounds to
the exact belief-propagation decoding thresholds have been
derived. The analysis in [24] gave rise to a simple algebraic
expression of the upper bound on irregular LDPC belief-
propagation decoding thresholds using GA, thus allowing its
simple determination from the codes parameters.

A possible follow up of this work could be the determination
of upper bounds on the word residual error probability for
the punctured codes object of this study. This result could
give rise to an extension of the puncturing criterion including
the minimization of the word residual error probability, thus
optimizing the error floor performance.
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