
 

 

Abstract—One of the most crucial aspects of an algorithm 

design for the wireless sensors networks is the failure tolerance. A 

high natural robustness and an effectively bounded execution 

time are factors that can significantly optimize the overall energy 

consumption and therefore, a great emphasis is laid on these 

aspects in many applications from the area of the wireless sensor 

networks. This paper addresses the robustness of the optimized 

Best Constant weights of Average Consensus with a stopping 

criterion (i.e. the algorithm is executed in a finite time) and their 

five variations with a lower mixing parameter (i.e. slower 

variants) to random communication breakdowns modeled as a 

stochastic event of a Bernoulli distribution. We choose three 

metrics, namely the deviation of the least precise final estimates 

from the average, the convergence rate expressed as the number 

of the iterations for the consensus, and the deceleration of each 

initial setup, in order to evaluate the robustness of various initial 

setups of Best Constant weights under a varying failure 

probability and over 30 random geometric graphs of either a 

strong or a weak connectivity. Our contribution is to find the 

most robust initial setup of Best Constant weights according to 

numerical experiments executed in Matlab. Finally, the 

experimentally obtained results are discussed, compared to the 

results from the error-free executions, and our conclusions are 

compared with the conclusions from related papers. 

 

 
Index Terms—Distributed computing, Average Consensus 

algorithm, Best Constant weights, communication breakdowns, 

failure analysis. 

I. INTRODUCTION 

IRELESS Sensor Networks (abbreviated as WSNs) is a 

technology with a wide usage in the field of the real-

time detection of global events and monitoring [1].  
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These networks consist of power and computationally 

constrained devices (labeled as nodes) situated in a 

geographical area in order to sense important information 

about a particular physical quantity, process it, share the 

measured data with other nodes and make a meaningful 

decision on the observed quantity [2]. Due to their specific 

character, the WSNs find the usage in various applications 

such as military surveillance, a natural disaster detection, 

industrial automation, inventory tracking, an acoustic 

detection, wildlife applications, medical systems, target 

tracking, a robotic exploration, a health-care, a microsurgery, 

agriculture etc. [3, 4]. In many of these applications, the 

nodes, entities with limited energy capabilities, are often 

deployed in extensive geographical areas with a difficult 

accessibility. These facts complicate a battery replacement of 

the nodes with an exhausted battery, which can negatively 

affect the quality of WSN applications or even stun the 

functionality of the whole system [5]. Therefore, great 

emphasis is put on an energy consumption optimization in the 

modern solutions, which can significantly extend the lifetime 

of a WSN application [6, 7].  However, on the other hand, 

energy undemanding solutions often suffer from an 

insufficient robustness (compared to traditional IT systems), 

which can significantly worsen the overall quality of an 

executed application. 

In many of these applications, the WSNs are equipped with 

a mechanism for sensor fusion. This allows a combination of 

sensory data and data from external entities, which results in 

an uncertainty reduction. The modern WSN applications are 

often based on distributed estimation algorithms, which are a 

key technology for a wide range of event classification and 

object tracking [8, 9]. A lot of distributed estimation 

techniques can be found in the literature [10-14]. In [10], Tsai 

et al. present CIA schemes based on a multi-bit mechanism 

executing a signal quantization. Coluccia et al. [11] propose an 

asynchronous distributed estimation algorithm using a 

Bayesian model with an unknown hyperparameter. Li et al. 

[12] present an optimal energy-constrained distributed 

estimation algorithm and a quasi-optimal energy-constrained 

distributed estimation algorithm exploiting a concept of
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equivalent unit-energy mean square error function. As shown 

in [15-20], the attention of many scientists is focused on linear 

consensus algorithms due to their suitability for the WSNs. 

These algorithms are characterized by reduced computation,  

synchronization, and communication demands and find a wide 

usage also in other branches such as an analysis of the Markov 

chains, cooperative coordination of multi-agent systems, load 

balancing, asynchronous solutions for linear systems etc. [21]. 

This paper is focused on the Average Consensus algorithm 

(AC), or more specifically, the Best Constant weights (BC) 

proposed for this algorithm. AC is a distributed 

multifunctional consensus algorithm characterized by low 

energy, memory, and computational requirements and thereby 

finds a wide usage in WSN applications [22]. Its principle lies 

in a neighbor-to-neighbor communication by means of a 

diffusion-like process, i.e. the nodes collect the information 

from the adjacent area and subsequently, combine it with the 

current inner state [11]. Then, the nodes asymptotically 

converge to the average calculated from the initial states of all 

the nodes. The execution of the algorithm is fully distributed, 

i.e. there is no need for the fusion center and the nodes 

discover only the adjacent area. AC is a flexible algorithm due 

to the modifiability of its weight matrix. The choice of weights 

affects several aspects of the algorithm such as the 

convergence rate, the robustness to failures, the impact of the 

quantization noise on the precision, the initial configuration 

etc. [16]. In this paper, we address the robustness of the 

optimal BC and its more conservative initial setups (i.e. the 

mixing parameter  takes various values). These weights are 

assumed to be the fastest within the uniform weights. They 

require the information about the second smallest and the 

largest eigenvalue of the corresponding Laplacian matrix for 

their optimized initial configuration [17].  

The goal of this paper is to verify the natural robustness of 

BC to random communication breakdowns modeled as a 

stochastic event of a Bernoulli distribution with a varying 

probability of the occurrence. A Bernoulli distribution is used 

since a random variable can take two states: success/false and 

the events are independent from each other (and so, a failure is 

not conditioned by failures of the other nodes or failures from 

the previous iterations). As shown in [23-26], it is frequently 

used for this purpose.  

Our motivation is to discover the most suitable 

configuration of BC for real-life applications in terms of the 

natural robustness using numerical experiments. We assume 

that the algorithm is not protected by any security 

mechanisms, which would pose a redundancy of the energy 

consumption and therefore, their usage is not appropriate for 

systems formed by constrained devices such as the WSNs.  

Our contribution is an analysis of BC with six different initial 

setups (the mixing parameter taking the following values α = 

0.1, 0.25, 0.5, 0.75, 0.9, 1) under a varying probability of the 

failure occurrence (p = 10%, 20%,…90%) in 30 randomly 

generated networks of either a strong or a weak connectivity 

(the algorithm is repeated 100 times for each mixing 

parameter, each value of p, and in each network – then, the 

average value is chosen as a representative of these values and 

only this value is further analyzed). See Fig. 1 and Fig. 2 for 

representatives of both sets of the networks. Our goal is to 

examine the impact of the probability value of the 

communication breakdown occurrence p and the impact of the 

value of the mixing parameter α on the robustness of the 

algorithm using three metrics: 

 the relative deviation of the least precise final 

estimate from the real value of the average 

 the convergence rate expressed as the number of the 

iterations necessary for the consensus 

 the deceleration of the algorithm (the relative 

difference between the error-free execution and the 

executions with communication breakdowns) 

 
Fig. 1.  Representative of randomly generated strongly connected networks 

with size of 30 nodes 

 
Fig. 2.  Representative of randomly generated weakly connected networks 

with size of 30 nodes 

 

According to the results obtained from the numerical 

experiments, it is concluded which initial setup achieves the 

highest and the lowest robustness in general (concluded 

according to the results averaged over all the networks). The 

obtained results in the scenarios with the failures are compared 
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to the convergence rate, the asymptotic convergence factor 

rasym, the per-step convergence factor rstep, and their associated 

convergence times (asym and step) when the algorithm is 

executed without any communication breakdowns. As 

mentioned earlier, the stopping criterion proposed in [27] is 

assumed to be implemented in order to ensure the algorithm 

execution in a finite time. As discussed in [28-31], the 

implementation of a stopping criterion is crucial for the real-

life WSN applications since it ensures a significant energy 

optimization (the algorithm is stopped when an acceptable 

precision is reached and so, the number of iterations is 

reduced). Therefore, many papers concerned with the 

implementation of AC into WSNs assume its application. The 

robustness of BC with the stopping criterion from [27] has not 

been previously analyzed in any other paper. Finally, the 

results from our numerical experiments are compared to other 

papers concerned with the robustness of AC. 

The next section deals with the related work. In the next 

part of the paper, we introduce the used mathematical tool to 

model AC in the WSNs. Furthermore, we provide the 

definition of BC and the main convergence conditions for 

these weights. We also introduce the used way of modeling 

communication breakdowns in WSNs. In the experimental 

section, we focus on a presentation of the obtained results and 

a related discussion (including a comparison with related 

papers). We turn our attention to the error-free executions and 

the impact of random communication breakdowns on the 

deviation of the least precise final estimate (which ensures that 

there is no less precise estimate in the whole network than the 

examined one) from the real average, the convergence rate, 

and the deceleration of the algorithm by comparing the 

convergence rate of the error-free execution with the 

convergence rate of executions with the presence of random 

communication breakdowns.  The Appendix section consists 

of the averaged results obtained from the numerical 

experiments executed in all the strongly and the weakly 

connected networks. 

II.   RELATED WORK 

The following section is focused on papers concerned with 

the robustness of AC, especially those addressing the impact 

of the communication breakdowns.  

Patterson et al. [32, 33] focus their attention on BC over 

networks in which link failures with independent probability 

are assumed. In the first experiment, the authors examine the 

robustness (quantized by the Decay Factor) of the optimal BC 

and its two other variants over nine node ring network, 25 

node 2-D torus, and 50 node ER random graph. In each 

network, the authors use three mixing parameters: the optimal 

one (OPT), a lower one than the optimal one (LW), a higher 

one than the optimal one (HG). From the results, it can be seen 

that for low link failure probabilities, HG are less robust for 

lower values of p in all the examined networks than two 

others. However, for higher values of p, it outperforms the 

concurrent initial configurations and so, is the most 

appropriate choice in terms of the robustness. In general, LW 

achieves the lowest performance. Furthermore, it is shown that 

higher values of p result in higher values of the Decay Factor 

in all the networks regardless of the initial setup except for 

lower values of p when HG are used. Moreover, it is shown 

that higher values of p increase the Steady-State Total 

Variance.  

Kar et al. [34] consider AC with random inter-sensor link 

failures and the presence of additive noise. They show that the 

nodes are able to reach the consensus in spite of these 

constraints and find the trade-off between the mean square 

error (determining the precision of the states) and the 

convergence rate of the algorithm. It is proven that the mean 

square error takes low values when the convergence rate of the 

algorithm is low.  

In [35], the authors pay their attention to a compensation 

mechanism for lost information caused by transmitter-based 

random failures. In the analysis, they demonstrate the impact 

of the failure on a network formed by 81 nodes. Moreover, 

they change the connectivity probability in the interval 0.2 - 

0.8 and the probability of the failure occurrence in order to 

examine the convergence rate of the algorithm. They show 

that an increase of the connectivity probability (i.e. the 

network is more connected) causes, in general, an increase of 

the convergence rate (the presence of failure is assumed). 

Furthermore, it is shown that an increase of the failure 

probability results in a deceleration of the algorithm.  

In [36], ARMSE (Averaged Root Mean Square Error) is 

used as a metric for an evaluation of the robustness of AC with 

asynchronous commination to packet losses. From the results, 

it can be seen that higher values of the failure probability 

cause higher values of ARMSE (and so, the precision is 

decreased).  

In [37], AC with packet drop communication is examined. 

It is shown that a higher probability of the failure causes a 

lower convergence rate. 

The paper [38] deals with the implementation of AC on a 

hardware platform from Memsic, where the inter-sensor 

communication is affected by link failures. It is analyzed how 

message collisions affect the relative error of three initial 

setups. In the first experiment, the authors used the mixing 

parameters equal to 0.05, 0.1, and 0.2. The experiment is 

repeated 10 times for each mixing parameter and is depicted 

that the mixing parameter = 0.05 achieves the lowest relative 

error in 8 cases (the maximal relative error is around 11%). In 

two other cases, the best performance is achieved by the 

mixing parameter = 0.1 (the maximal relative error is around 

12%).  The initial setup with the highest mixing parameter 

(0.2) is the least precise (the maximal relative error is around 

45%). Another experiment is focused on the trade-off between 

the value of the mixing parameter and the number of the 

iterations for the consensus. It is shown that a less reliable 

communication causes a deceleration of the algorithm and 

higher values of the mixing parameter ensure a higher 

convergence rate than the lower ones in general. 
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III. PROBLEM FORMULATION 

A. Model of Average Consensus in WSNs 

In the graph theory, a WSN can be modeled using an 

indirect finite graph (labeled as G) determined by two sets 

(V and E) and defined as follows [39, 40]:  

 ),( EVG  (1) 

The set V contains all the vertices, which represent the 

particular nodes in a network. Each vertex is allocated the 

unique identification number and is labeled as vi. The set E is 

formed by all the edges, whose existence indicates the direct 

connection between two nodes (vi, vj). Sometimes, they are 

labeled as eij  in literature. 

As mentioned earlier, our attention is focused on AC, whose 

purpose is to estimate the average value from the initial values 

of all the nodes [41]. This goal is achieved by mutual 

exchanges of the current states among the nodes situated in the 

adjacent area. The nodes asymptotically converge to the 

average value by updating their inner states according to the 

collected inner states from the nodes situated in their the 

adjacent area and the inner state from the previous iteration. 

This procedure can be modeled as the following difference 

equation [41]:  

 )()1( kk Wxx   (2) 

Here, W is the weight matrix and the values of its elements 

are determined by the used weights of AC. The elements of 

the weight matrix W vary for different weights. The matrix 

determines the convergence rate, the convergence or the 

divergence of the algorithm, and affects other aspects such as 

the robustness, the resistance to a quantization noise, the initial 

configuration etc. The vector x is a column vector variant over 

the iterations (the kth iteration is labeled as k) and contains all 

the inner states at each iteration (k = 1 poses the initial state).  

Furthermore, L ∈ ZNxN is the Laplacian matrix, which 

describes the mutual connectivity between each pair of the 

nodes and provides other useful information about the 

topology. Mathematically, it is defined as follows [42]: 
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[.]ij represents the element in ith and jth position in the 

corresponding matrix. The parameter di is the degree of the 

node vi (and therefore, the number of its neighbors). 

In this paper, we focus on the optimized variant of BC and 

their slower variants with a more conservative initial setup. 

Their generalized weight matrix can be defined as follows 

[43]:   
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The parameter α is the mixing parameter and its value 

determines the elements of the weight matrix W. Each edge of 

BC has the same weight and therefore, BC are classified as 

uniform weights. To ensure the convergence of the algorithm, 

the value of  has to be chosen from the following interval 

(the ascending order of eigenvalues is assumed [44], i.e. (0 = 

1 (L) ≤ 2 (L) ≤ 3 (L) ≤ ……≤ N (L)) [43]. 
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Here, i (L) is the ith eigenvalue of the corresponding 

Laplacian matrix L. The eigenvalues provide useful 

information about a network topology (e.g. whether or not the 

corresponding network is connected). The parameter N 

determines the size of a network and therefore, the number of 

the nodes in a network. So, it can be seen that the optimized 

variant requires the knowledge about the exact value of the 

second smallest (2 (L)) and the largest eigenvalue (N (L)) of 

L. Unrespecting this interval results in the divergence of the 

algorithm [27]. As already mentioned, AC asymptotically 

converges to the average value. Therefore, its character can be 

described as follows: 
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Here, the vector 1 is a column vector whose all elements are 

equaled to 1. The upper index T indicates that the matrix is 

transposed. The existence of this limit is crucial for a proper 

functionality of the algorithm. As adduced in [45, 46], the 

weight matrix has to preserve the following conditions in 

order to ensure the convergence of the algorithm: 
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Here, (.) represents the spectral radius, which determines 

the maximal eigenvalue in the absolute value [46]. The 

preservation of (7) and (8) ensures the bistochasticity of the 

weight matrix and determines the convergence point of the 

algorithm. The fulfilling of the condition in (9) secures the 

convergence of the algorithm. The parameter in (9) is the 

spectral radius  of the matrix determined as the difference of 

the weight matrix W and the matrix determined as 1/N.1.1T. It 

is defined as [42]:  

 

 )}(),(max{ 2 WW N   (10) 

Here, i (W) is the ith eigenvalue of the corresponding 

weight matrix W. The descending order of these eigenvalues 

is assumed, i.e. 1 = λ1(W) ≥ λ2(W) ≥ λ3(W) ≥……..≥ λN(W) 

≥ -1. Like the eigenvalues of the Laplacian matrix L, also 

eigenvalues of W can provide useful information for an 

analysis of the corresponding network. As we assume an 

execution in a finite time, it is necessary to define a stopping 

criterion, ensuring a finite algorithm execution. Therefore, in 

order to determine the completion of the estimation process, 

we define the following stopping criterion [27]: 

  )}(min{)}(max{ kk xx  (11) 
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 The parameter δ determines the precision of the final 

estimates at the cost of a deceleration of the estimation 

process. We set its value to 0.0001 and keep it constant during 

our numerical experiments. 

B. Random communication breakdowns 

We model communication breakdowns as a stochastic event 

with a Bernoulli distribution. There are two states that the 

random variable can take. The first one is success with the 

probability p, meaning that a communication breakdown 

between two adjacent nodes occurs with the probability p and 

causes the loss of one message. The other one is failure, 

meaning that a communication breakdown does not happen 

and therefore, the transmission of a message is successful 

(happens with 1-p).  

 In the experimental part, we assume that the probability p 

takes the following values: {10%, 20%, 30%, 40%, 50%, 60%, 

70%, 80%, 90%}.  

IV. NUMERICAL EXPERIMENTS AND DISCUSSION 

In this section, we verify the natural robustness of BC for 

AC using numerical experiments. We examine the impact of 

random communication breakdowns on the deviation of the 

final estimates from the real average, the convergence rate 

expressed as the number of the iterations for the consensus, 

and the deceleration of the convergence rate over 60 randomly 

generated networks (30 strongly (Fig. 1) and 30 weakly (Fig. 

2) connected topologies with the size of 30 nodes). The 

networks are generated as follows: each free position within a 

square working area is allocated the probability of a node 

placement with the value equaled to the reciprocal of the 

number of the free positions. Therefore, a node placement is a 

stochastic event of a uniform distribution. Then, in order to 

ensure a different average connectivity, the transmission range 

of the nodes is changed. Two nodes located in one another’s 

range are neighbors and so, communicate together. We choose 

Matlab R2016a (including the built-in functions rand, min, 

max, sum) as a simulation tool and all the used scripts are 

developed by the authors of this paper. In each network, the 

numerical experiment for the same p and the same  is 

repeated 100 times (to achieve a higher statistical credibility) 

and the average is chosen as a representative of the set 

containing the obtained convergence rates or the deviations of 

the least precise final estimate. We set the initial states to the 

values equaled to the unique identification numbers of the 

nodes (We assume that the identification numbers take the 

values from 1,2,…N). As mentioned above, we assume that 

the stopping criterion presented in [27] is implemented. It is 

because an execution of the algorithm in a finite time saves the 

number of the iterations necessary for the nodes to achieve the 

consensus, which optimizes the overall energy consumption.  

We focus not only on the optimized BC but also on their 

slower variants (i.e. with a smaller value of α). Thus, we 

choose that the parameter α takes the following values:  
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In order to ensure an easy readability of the depicted 

figures, we label the examined variants of BC as follows: (12) 

is labelled as 0.1, (13) is labelled as 0.25, (14) is labelled as 

0.5, (15) is labelled as 0.75, (16) is labelled as 0.9, and (17) is 

labelled as 1 (maximally optimized variant). 

As mentioned earlier, we assume that the communication 

breakdowns are considered to be a stochastic event with the 

probability of the occurrence labeled as p, which takes the 

values from the interval 10% - 90%.  

A. Analysis of error-free execution of algorithm 

The first part of our experiments addresses the convergence 

rate of the examined initial configuration of BC with the error-

free execution. In Fig. 3, the number of the iterations 

necessary for the consensus averaged over 30 strongly and 

weakly randomly generated networks is shown (separately for 

each set of the networks) – the stopping criterion (11) is 

implemented. In Fig. 4, the convergence rate is analyzed using 

the asymptotic convergence factor rasym and the per-step 

convergence factor rstep (again, the average over 30 randomly 

strongly and weakly generated network is separately shown). 

The mentioned parameters are defined as follows [46]: 
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 Here, ||.||2 is the spectral norm, which determines the 

maximum singular eigenvalue of the corresponding 

matrix/vector. Furthermore, their associated convergence 

times (asym and step) are shown in Fig. 5 (again, the average 

over 30 randomly strongly and weakly generated network is 

separately shown) and are defined as follows [46]: 
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From the results, it can be seen that a higher value of  

ensures a higher convergence rate regardless of the used 

metric (fewer iterations, lower rasym/rstep (as well as asym/step) 

mean a higher convergence rate). Also, it is seen that rasym and 

rstep  (as well as asym and step) are equal to one another since 

all the examined weights have a symmetric weight matrix [46] 

and therefore, they are depicted in the same figure. Moreover, 

it is seen that the algorithm is faster in the strongly connected 

networks than in the weakly connected ones for each . 

 

 
 
Fig. 3.  Average Convergence Rate expressed as number of iterations for 

consensus for various mixing parameters in both sets of networks 

 

 
 

Fig. 4.  Average asymptotic convergence factor and per-step convergence 

factor for various mixing parameters in both sets of networks 

 
Fig. 5.  Average associated convergence times for various mixing parameters 

in both sets of networks 

B. Analysis of deviation of final estimates from real average 

In the second part of our experiments, we verify how the 

communication breakdowns affect the value of the final 

estimates using numerical experiments. More specifically, we 

examine how the least precise final estimate differs from the 

value of the real average.  

From the results obtained from the numerical experiments 

(see Fig. 6 and Fig. 7), we can see that the deviation of the 

least precise final estimates from the real value of the average 

is the smallest for  = 0.1 (i.e. the lowest examined value of 

the mixing parameter) and grows with an increase of this 

parameter regardless of the network connectivity and for each 

p. Furthermore, it can be seen that an increase of the 

communication breakdown probability p results in a higher 

deviation from the real average in both types of the networks 

and for each value of . Moreover, it is observed that the 

algorithm is more robust for each  and for each p (i.e. the 

deviations for the same  and p are mutually compared) in the 

strongly connected networks than in the weakly connected 

ones. 

C. Analysis of convergence rate of algorithm 

In the following experiment, we examine how the 

communication breakdowns affect the convergence rate of the 

algorithm. So, we examine the convergence rates and the 

deceleration of the estimation process, i.e. we show the 

number of the iterations necessary for the consensus and 

relatively express the difference between the convergence rate 

of the error-free execution and the convergence rate of an 

execution with failures.  

In the first analysis, we focus our attention on the 

convergence rate expressed as the number of the iterations 

necessary for the consensus (see Fig. 8 and Fig. 9). In both 

sets of the networks and for each p (i.e. the convergence rates 

only for the same p are mutually compared), we can see that 

the highest convergence rate is achieved by the optimal variant 

of BC (i.e.  = 1), which has also the highest convergence rate 

of the error-free execution expressed as the number of the 
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iterations, rasym, rstep, asym, and step. Regardless of the network 

connectivity and for each p, the convergence rate decreases as 

the value of  is decremented (the same character is observed 

for the metrics used to analyze the error-free executions). 

Moreover, like in the previous analysis, an increase of p has a 

negative impact on the examined aspect, i.e. the convergence 

rate decreases due to communication breakdowns for each  

and regardless of the network connectivity.  

In the next analysis, we turn our attention to the 

deceleration of the algorithm, i.e. a relative comparison of the 

executions with failures with the error-free ones. From the 

results (see Fig. 10 and Fig. 11), it can be seen that in the 

strongly connected networks, the deceleration grows as the 

value of  is increased (for each p). In the weakly connected 

networks, the value of the deceleration for the same p differs 

only negligible for  = 0.1, 0.25, 0.5, 0.75, and 0.9, however, a 

significant decrease of the deceleration is observed for  = 1. 

Here, the algorithm is even accelerated for p = 10% due to 

random communication breakdowns. Furthermore, it is seen 

that an increase of p causes a more significant deceleration in 

both sets of the networks and for each value of .  

D. Discussion about achieved results 

The last section of the experimental part is concerned with 

a discussion about the observed phenomena from the 

simulations and a comparison to related work. 

According to the results obtained from our numerical 

experiments, it can be concluded that the robustness of the 

algorithm in terms of the deviation of the least precise final 

state (the precision) is affected by several factors. One of them 

is the value of the communication breakdown probability p – it 

is observed that its higher values decrease the precision of the 

final estimates. The similar behavior is observed in this paper 

[36] - the authors use an ARMSE-based (Averaged Root Mean 

Square Error) metric and prove that an increase of p causes a 

higher value of this parameter (and so, a lower robustness). 

Also, in [32, 33], it is shown that in general, an increase of p 

results in a growth of the Decay Factor (and so, causes a 

decrease of the precision) in all the examined networks. 

Moreover, it is shown that an increase of p also causes a 

higher Steady-State Total Variance [33]. So, these papers 

confirm our conclusion.  

Another aspect affecting the deviation of the final states is 

the value of the mixing parameter  (its lower value ensures a 

higher robustness – and so, the slower variants are more 

robust). According to a theoretical analysis, the authors of [34] 

concluded the following statement: “the mean square error can 

be made arbitrarily small, though at a cost of lower 

convergence rate” [34]. So, they confirm our conclusion that 

the robustness is increasable by slowing the algorithm down. 

In [38], where AC in real test-beds is analyzed, it is shown that 

a lower value of the mixing parameter ensures a lower relative 

error – this is another paper that confirms our conclusion. 

However, the authors of [32, 33] use a metric based on the 

Decay Factor and show that higher values of the mixing 

parameter cause a lower value of the examined parameter 

except for several values of p. The Steady-state Total Variance 

is also lower for higher values of the mixing parameter [33].  

Furthermore, the network connectivity is another aspect that 

has an impact on the precision – we observe that more 

connected networks are more robust in terms of this aspect. 

This comparison between the strongly and the weakly 

connected networks is not provided in any other paper.  

In terms of the convergence rate, it is seen that the variants 

with a higher  are faster (confirmed by [38]) and the order is 

the same as in the error-free executions even though they are 

more decelerated in the strongly connected networks than 

variants with lower . In the weakly connected networks, the 

convergence rate is smaller than in the strongly connected 

ones and the variants with a higher  are faster again. The 

deceleration is almost the same for each  except for  = 1, 

when it is significantly lower and the algorithm is even 

accelerated for p = 10%. However, this cannot be considered 

to be an advantage because the algorithm works with a 

decreased precision of the final estimates.  

Furthermore, in both sets of the networks, a higher value of 

p results in a bigger number of the iterations necessary for the 

consensus (i.e. lower convergence rate) and a higher 

deceleration. This statement is concluded also in [35]. In [37], 

the experiments show that a higher probability of the 

successful transmission (and so, a lower value of a 

communication breakdown) ensures a higher convergence 

rate.  

The algorithm is slower in the weakly connected networks 

than in the strongly connected networks (like in the error-free 

executions). This statement is confirmed in [35], where the 

authors change the connectivity probability and its lower 

values result in a slower convergence rate. 

V.   CONCLUSION 

We examined the natural robustness of the Best Constant 

weights of the Average Consensus algorithm with a stopping 

criterion in a set of numerical experiments executed in Matlab. 

We focused on their optimized and five slower variants (i.e. 

Best Constant weights took six various values of the mixing 

parameter). We changed the probability of the communication 

breakdown occurrence and examined the deviation of the least 

precise final estimate from the real average, the number of the 

iterations needed to reach the consensus, and the deceleration 

of the algorithm averaged over 30 strongly and 30 weakly 

connected networks. From the results obtained from our 

numerical experiments, we could see that the weights were 

more robust to the deviation of the final estimates in the 

strongly connected networks. It can be seen that an increase of 

the communication breakdown probability and a growth of the 

mixing parameter caused a higher deviation of the least 

precise estimate and so, the algorithm was less robust in terms 

of the precision. In terms of the convergence rate, the 

performance was higher for higher values of the mixing 

parameter and lower values of the communication breakdown 

probability. A higher convergence rate was observed in the 

strongly connected networks. Moreover, in the strongly 

connected networks, the deceleration of the algorithm grew as 

the mixing parameter and the communication breakdown 

probability was increased. In the weakly connected ones, the 

growth of the communication breakdown probability had the  
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APPENDIX 

 
Fig. 6. Deviations of final states from real average for six various mixing parameters averaged over 30 strongly connected networks 

 

 
Fig. 7. Deviations of final states from real average for six various mixing parameters averaged over 30 weakly connected networks 

 

 
Fig. 8. Convergence rate expressed as number of iterations for consensus for six various mixing parameters averaged over 30 strongly connected networks 

 

 
Fig. 9. Convergence rate expressed as number of iterations for consensus for six various mixing parameters averaged over 30 weakly connected networks 
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same impact on the deceleration as in the strongly connected 

networks. However, the value of the mixing parameter almost 

negligibly affected the deceleration except for the optimized 

Best Constant weights, when the algorithm was even 

accelerated for low communication breakdown probability. 

Nevertheless, this phenomenon is not desired since the 

algorithm works with an increased imprecision. So, it can be 

concluded that the initial setups whose performance is lower 

when the error-free execution is analyzed are more robust to 

random communication breakdowns in terms of the precision 

but worse in the convergence rate (in spite of a lower 

deceleration in the strongly connected networks).  
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