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Abstract—In order to detect the multi-component signal from 

the noise and chaos, a method based on the differential nonlinear 

mode decomposition (DNMD) is proposed in this paper. This new 

analysis approach applies the differential to the original signal. 

Then the nonlinear mode decomposition (NMD) is used to obtain 

a series of meaningful nonlinear modes, which has the advantage 

of extracting high frequency components with small amplitudes 

and learns from the superiority of NMD such as noise robust. 

Finally, spectrum analysis is used to the decomposed components. 

The analysis of simulation signals and the real underwater signal 

is given to demonstrate the effectiveness of this method. The 

proposed method can detect multi-component signals of time-

varying amplitude without fake frequency under the condition of 

noise and chaos. Compared with traditional decomposition 

methods, the peaks of Hilbert marginal spectrum of proposed 

method are sharper, and 
2 3,R R  are higher. 

 
Index Terms—Multi-component signal detection, Differential 

nonlinear mode decomposition, Chaos, Spectrum analysis 

 

I. INTRODUCTION 

DAPTIVE time-frequency analysis methods have wide 

range of applications, such as speech signals analysis [1], 

sonar signals processing [2] and mechanical fault 

diagnosis [3]. There are numerous observable chaotic signals 

in the natural phenomena, such as ambient acoustic noise in 

ocean and clutter induced by an electromagnetic pulse directed 

at the ocean surface [4].  
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In the past, FFT is used to analyze signals because of its 

simplicity and efficient computation, but there are three major 

pitfalls, namely aliasing, picket-fence effect and leakage [5]. 

FFT is not suitable for detecting the time-varying signals. 

Chirp-Z transform is one of the spectrum zooming methods to 

estimate frequency [6]. Discrete chirp-Fourier transform 

(DCFT) can be used to analyze multicomponent chirp signals 

[7]. A procedure based on the radial-basis-function (RBF) 

neural network is proposed to detect the amplitudes of the 

multi component signals [8]. However, RBF neural network 

has an inevitable training process. The training is typically 

done in two phases, first fixing the width and centers and then 

the weights. More numerical operations are used in the RBF to 

increase the accuracy. A method based on convex 

optimization is proposed in [9], but weak signals are not easy 

to be recognized because some shape peaks exist in the 

detection result figures.   

The methods of decomposition of non-linear signal are 

studied in recent years. Empirical mode decomposition (EMD) 

[10,11] separates complicated signals into a series of intrinsic 

mode functions (IMFs), then Hilbert spectrum is used to 

represent the time-frequency distribution. In addition, the 

marginal spectrum is offered a measure of total amplitude (or 

energy) contribution from each frequency value. EMD is 

widely used in non-linear and non-stationary data analysis 

[12]. When the amplitudes of signals are less than the 

boundary of the hard slope, the EMD does not separates the 

signals [13]. The major drawback of EMD is the mode mixing, 

that is to say, one IMF includes wide disparate scales or a 

similar scale appears in different IMFs. In order to solve this 

problem, the ensemble empirical mode decomposition 

(EEMD) [14] adds white Gaussian noise of finite amplitude to 

the signals and utilizes EMD. The above two methods have a 

disadvantage that they are quite sensitive to noise. 

Nonlinear mode decomposition (NMD) [15] decomposes a 

signal into a number of physically meaningful oscillations. 

Compared with the previous methods, NMD is a new adaptive 

decomposition tool with the advantage of noise-robust [16]. 

Differential nonlinear mode decomposition (DNMD) is put 

forward in this paper, which synthesizes the strengths of 

current methods. Numerical simulation results have shown 

that the proposed method has better performance on extracting 

small amplitude signals under noise and chaos. The method 

based on DNMD shows advantages over other methods in 

quantitative comparisons. In the case of underwater acoustic
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signal, proposed method can remove effectively the ocean 

ambient noise and detect both signals when the amplitude of 

one signal is smaller than another signal.  

II. BACKGROUND 

Nonlinear mode decomposition is a new adaptive 

decomposition tool proposed in 2015[15]. NMD is based on 

the time-frequency analysis techniques, surrogate data tests, 

and the identification of the time-variable harmonics. NMD 

extracts all physically meaningful modes, removes noise and 

has excellent performance at noise robustness. The NMD 

result can be expressed as 

 

     tntcts
i

i                              (1) 

 

where  ts ,  tci
 and  tn  are the original signal, the i th 

Nonlinear Mode(NM) and the noise, respectively. The main 

algorithm of NMD is described as follows.  

(1) Calculate the original signal’s wavelet transform (WT) 

 tWs , , 

   
 

  




















dse

dutu
ustW

ti

s





































 


0

ˆˆ
2

1

,

                  (2)  

  dets ti









0
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where 0 1f  ,
 )(ˆ s  is the Fourier transform of  ts ,  t  

denotes a log-normal wavelet and )(ˆ   is the Fourier 

transform of  t .  
ˆmaxarg  denotes wavelet peak 

frequency. 

(2) Find all h th ridge curves ( ) ( ) h

p t  of WT, ridge curve can 

be defined as the sequence of WT amplitude peaks into which 

most of the energy of that component is mapped at each time. 

At time  t , h  points of the position of peaks 
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 . All the  tp  form the h  ridge 

curve [17].  

(3) Obtain the amplitude   tA h , phase   th , and frequency 

  tv h  from 
( ) ( ) h

p t  

WT:

 

   
 

 

   

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )
^

2 ( , )
( )

*[ / ]











  













d

h
p

p

h

h

h

lnv th h

p

sh i t

h

v t t e

W t t

t tv

A t e

                

(5)  

( ) ( )( ) ( )h ht t                                    (6) 

 

(4) Check whether WT is the optimal TFR type, if not, switch 

windowed Fourier transform (WFT)  tGs ,  
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where  tg  is a Gaussian window for the WFT ,  ĝ  meets 

the condition:    gg ˆmax0ˆ  . 
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Then re-extract the ridge curves and harmonics, 
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where 
 

ln ( )
h

d t   and 
 

( )
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are the correction for 

discretization effects found by parabolic interpolation. 

(5) Compute the possible h th harmonic 
( ) ( ) ( )( ) ( )cos ( )h h hx t A t t .

 

(6) Calculate the significance level, 
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where
 0sD DN 

is the number of surrogates with 

0sD D and
sN is the number of surrogates. D  is the degree 

of order in the amplitude  tA  and frequency  tv , Q  is 

spectral entropy of  tA  
and  tv . 

0D  corresponds to the h th 

harmonic, 
1 ss ND 

corresponds to surrogates. In order to 

confirm the value of D , this paper calculates  0,1D ,  1,0D  

and  1,1D , and then selects the maximum among them.  

(7) Compute amplitude-phase consistency ( ) h  
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where , ,A vw w w  
are the weights of ( ) ( ) ( ), ,h h h

A vq q q .
  

(8) When both amplitude-phase consistency ( ) 0.25h    and 

the significance level is 0.95 , harmonic is identified as 

true.  

(9) Constitute one NM  tci
 using the first harmonic and true 

higher harmonics. 

(10) Subtract the NM from the signal and repeat (1)-(9). If the 

first harmonic does not pass the surrogate test against noise, 

and therefore NMD is stopped. 

III. MULTI-COMPONENT SIGNAL DETECTION BASED ON 

DNMD  

In the actual situation, the low power signals are inevitably 

masked by noise. To solve the problem of extracting multi 

component time-varying signal, a new detecting method based 

on the differential nonlinear mode decomposition is proposed. 

Differential operation can enlarge the power of small part and 

make it easier to be detected. In order to analyze the signal 

deeply, spectrum analysis is applied after decomposition. The 

effect of suppressing noise and chaos is improved by twice 

decomposition. The algorithm of this novel method is carried 

out in the following steps.   

Step 1: Apply differential to the original signal  ts  to get 

the new signal  ts ; 

Step 2: Apply NMD to  ts  to get NMs  tci
 ;  

Step 3: Integrate  tci
  to get  tbi

; 

Step 4: Apply NMD to each  tbi
, we only extract the first 

NM of the  tbi
 and regard it as the  tci

 of the original 

signal. Each NM contains fundamental and harmonics while 

each IMF contains only one mode of oscillation. The residue 

of the signal is removed in DNMD.  

Step 5: Complete Hilbert marginal spectrums to  tci
. 

Hilbert spectrum is defined as follows 
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where  tai
 and  ti  are the instantaneous amplitude and 

instantaneous frequency of      tcjtctz iii
ˆ .  tci
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represents Hilbert transform of  tci
. So the Hilbert marginal 

spectrum is  
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To quantitatively compare these methods, the ratio 
iR  [18] 

is calculated in this paper by  
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where subscript i means ith component, 
iA  represents the 

peak of ith component and E denotes mean value of the 

spectrums of the decomposed component. The higher 
iR  is, 

the better performance of the detection method is. 
iR  is the 

mean value of
 iR . 

IV. NUMERICAL SIMULATION AND ANALYSIS  

After describing the DNMD procedure, this paper illustrates 

the effectiveness of the proposed method by considering the 

following simulation signals [19, 20]. All the tests are carried 

out using MATLAB R2012b on a desktop Intel Core i7-455U 

PC with Windows 8 system. The sampling frequency of the 

signal is 400Hz. A Monte Carlo simulation of 100 replications 

is conducted for this section. In our paper, SNR is the ratio of 

the signal power to the noise power, and it does not include 

chaos. 

A. Example 1 

A multi-component signal of time-varying amplitude under 

white noise is described as follows, 
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where Hz101 f , Hz452 f , Hz1003 f , 11 a , 5.02 a , 

3.03 a and  tn  is a white noise. The time domain 

waveform of signal 
1y (t)  under dB10SNR  is depicted in 

Fig. 1. 

For the convenience of comparisons, the Hilbert marginal 

spectrums of decomposition of signal 
1y (t)  are presented in 

Fig. 2. DNMD and NMD can clearly extract each component 

signal and the peak of each component is sharper because of 

good noise robustness (see Fig. 2a and Fig. 2b). There are no 

obvious peaks near the 45Hz and the spectrums are flat at 

100Hz because noise interference is serious in Fig. 2c and Fig. 

2d, so EMD and EEMD fail to obtain small component signals 

and these methods only detect the components of  ts1
 and 
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 ts2
. There is a fake frequency about 5Hz at the beginning of 

the EMD spectrum (as shown in Fig. 2c). 

In order to compare the performance of DNMD 

quantitatively, the ratio 
iR  of each method under different 

SNR  is listed in Table I. According to the Table I, superiority 

of 
1R  in DNMD is not obvious. 

2R and 
3R  of DNMD are 

higher than that of NMD. When SNR  decreases to 10dB, 

DNMD and NMD can both detect the  ts3
, 

2R  of DNMD is 

5.1191 higher than that of NMD. The results of EMD and 

EEMD still do not meet expectations. Therefore, DNMD 

performs better than the other decomposition methods. 
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Fig. 1.  The time domain waveform of signal 

1y (t) . 
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(a) DNMD 
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(b) NMD 
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(c) EMD 
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(d) EEMD 

Fig. 2. Hilbert marginal spectrum of signal 
1y (t)

 
 
 

TABLE I 

THE RATIO
iR OF EACH METHOD UNDER DIFFERENT SNR

 
SNR 
/dB  

DNMD NMD EMD EEMD 

20 

1R  196.0085 184.4007 113.6896 86.6355 

2R  54.5923 43.7354 11.4991 13.9559 

3R  6.6695 6.5119 NA NA 

15 

1R  
164.2211 174.0197 44.8732 45.5927 

2R  

50.5447 36.4610 6.0942 8.2387 

3R  5.5624 5.3189 NA NA 

10 

1R  145.2083 165.2165 28.1738 30.1645 

2R  37.8538 32.7347 3.8026 4.4622 

3R  5.2101 4.6806 NA NA 

5 

1R  135.5067 187.9332 23.8997 32.0115 

2R  16.8437 24.0974 NA NA 

3R  NA NA NA NA 

 

 

B. Example 2 

Chaotic signals are commonly existed in the natural 

phenomena. A chaotic signal looks like a random noise, which 

is generated by a determinate system. When the signal is 

polluted by white noise and chaotic signals, DNMD can also 

extract the original signal. The chaotic interference signal is 

generated by Lorenz system which is a simplified 

mathematical model for atmospheric convection at first. 

Lorenz system, as a typical chaos, is commonly added to 

signal analysis. The equation can be described as follows: 

 

( )x y x

y xz rx y

z xy bz

 


   
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                             (22) 

 

Where 10,  28,  8 / 3r b    , the initial value is 

0 0 0 0.1x y z   [9].  

Here take its x component. To further validate effectiveness 
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of DNMD, another simulated signal 
2 (t)y  is discussed. 

1 2 31,  0.3,  0.08a a a    and
1( ) 0.02d t x  is the 

chaotic signal.  

 

    12 ( ) ( )y t y t n tp d t                       (23) 

 

When SNR=15dB , the time domain wave of signal 

2 (t)y is presented in Fig 3. The Hilbert marginal spectrums of 

each method are shown in Fig. 4. The ratios 
iR  of each 

method under different SNR are listed in Table II. In the Table 

II, SIR is the ratio of signal power to interference (noise and 

chaos) power.  

As shown in Fig. 4, when decreasing the amplitude of  ts2
 

and  ts3
, DNMD still detects all the component signals. 

NMD loses the third component. The spectral peaks of  ts2
 

in DNMD and NMD are sharper than that of EMD and 

EEMD. 

 

As listed in Table II, when SNR decreases to 10dB, DNMD 

also detects the third component signal unsuccessfully. 

However, 2R  in DNMD are larger than that of NMD. When 

dB5SNR , 2948.132 R  in DNMD and 9949.122 R  in 

NMD. DNMD can suppress the noise and chaos effectively 

and reflect more information from the signal. It is 

demonstrated in Table II that DNMD is superior to other 

methods under the same condition of noise and chaos. 
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Fig. 3. The time domain wave of signal 

2 (t)y
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     Fig. 4. Hilbert marginal spectrum of signal 
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The time cost of each method is listed in Table III. The 

running time of DNMD is longer because of the higher 

algorithmic complexity and better performance of detection, 

which matches our anticipation. As we all know, time 

consumption and performance of the method can’t be achieved 

at the same time. 
 

 

 

 

 

 

 

 

R. MALEKIAN et al.: A METHOD OF MULTI-COMPONENT SIGNAL DETECTION 175



TABLE II 

 THE RATIO 
iR  OF EACH METHOD UNDER DIFFERENT SNR 

SNR 

/dB 

SIR 

/dB  
DNMD NMD EMD EEMD 

20 12.89 

1R  215.3318 232.6214 67.5781 104.6944 

2R  48.1808 33.7599 3.4137 5.7904 

3R  2.0685 NA NA NA 

15 11.28 

1R  206.1982 203.7725 43.1689 56.8438 

2R  26.5790 19.6764 2.3779 3.4724 

3R  1.9004 NA NA NA 

10 8.16 

1R  

220.9171 238.3432 39.4086 35.9182 

2R  

23.9773 20.0645 NA NA 

3R  NA NA NA NA 

5 4.32 

1R  

172.8786 205.9586 30.0629 37.5047 

2R  
13.2948 12.9949 NA NA 

3R  NA NA NA NA 

 

 
TABLE III 

THE TIME COST OF EACH METHOD 

 
 DNMD NMD EMD EEMD 

running time/s 244.919 113.050 0.474 11.415 

V. REAL SIGNAL ANALYSIS  

Ocean ambient noise is colored noise and an interference 

signal. Industrial activities, ship noise, wind and rain are main 

noise source off the coast. In this section, DNMD is used to 

detect the real underwater signal. The vertical underwater 

acoustic array data was collected in shallow-water off the 

Italian west coast by the NATO SACLANT Center in La 

Spezia, Italy. The sample frequency is 1kHz. The frequency of 

the signal is about 170Hz and 350Hz. The data used here was 

collected by the third sensor. Actually, the frequency are near 

170Hz and 330Hz after analysis. A multi component signal 

analyzed here consists of this two single frequency signals.  

 

     tsftsfty 213                    (24) 

where 
1( )sf t  denotes the signal of 170Hz, 

2 ( )sf t  denotes the 

signal of 330Hz and  is a coefficient used to adjust the 

amplitude of 
2 ( )sf t .  

When 1  , the time waveform and FFT of 
3( )y t are 

depicted in Fig. 5 and Fig. 6. There is a certain degree of 

apophysis near 100Hz in Fig. 6, which means ocean ambient 

noise is relatively strong. The Hilbert marginal spectrums of 

the signal decomposed by each method are shown in Fig. 7. 

According to Fig. 7, all methods can detect the 170Hz and 

330Hz to some extent. However, the spectrum of DNMD and 

NMD are cleaner than traditional decomposition method. 

DNMD and NMD remove more noise and interference. The 

performance of eliminating the effect of the ocean ambient 

noise in EMD, EEMD is weak. 
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Fig. 5. The time domain wave of underwater acoustic signal 
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Fig. 6. The FFT spectrum of underwater acoustic signal 

3 1 2( ) ( ) ( )y t sf t sf t   
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(b) NMD 
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(d) EEMD 

 

Fig. 7 Hilbert marginal spectrum of underwater acoustic signal 

3 1 2( ) ( ) ( )y t sf t sf t   

 

When 0.23  , DNMD is more effective than other 

methods. The time waveform and the FFT spectrum of signal 

3 1 2( ) ( ) 0.23 ( )y t sf t sf t   are shown in Fig. 8 and Fig. 9, 

respectively. The Hilbert marginal spectrums of this condition 

are shown in Fig. 10. There are two peaks near 290Hz and 

370Hz in Fig. 9, which is easy to be recognized as useful 

frequencies. From Fig. 10a and Fig.10b, DNMD suppresses 

ocean ambient noise and detects the 170Hz and 330Hz while 

NMD only extracts the 170Hz. It’s difficult to find single 

frequency in Fig. 10c and Fig.10d because EMD and EEMD 

suffer from noise seriously.  
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Fig 8. The time domain wave of underwater acoustic signal 

3 1 2( ) ( ) 0.23 ( )y t sf t sf t   
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Fig. 9. The FFT spectrum of underwater acoustic signal 

3 1 2( ) ( ) 0.23 ( )y t sf t sf t   
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(a) DNMD   
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(b) NMD                                                                             
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Fig. 10. Hilbert marginal spectrum of underwater acoustic signal 

3 1 2( ) ( ) 0.23 ( )y t sf t sf t   

VI. CONCLUSION  

In this paper, a new method based on DNMD is proposed 

to analyze the non-linear and non-stationary signal and to 

detect multi-component time-varying signal. Firstly, the 

differential is applied to the original signal. The NMD is 

utilized to obtain a series of physically meaningful 

oscillations. Then, spectrum analysis is used to the 

decomposed components. The proposed method solves the 

problem of extracting relatively high frequency components 

with small amplitudes and is less sensitive to noise and chaos 

comparing with EMD and EEMD.  

From the simulation signals, the proposed method can 

detect the more component signals under white Gaussian noise 

and chaotic interference. There is no fake frequency in the 

DNMD Hilbert spectrum. This approach holds on to the 

favorable position when changing the amplitude of signal. 

2 3,R R  of DNMD are almost larger than that of NMD. From 

the real data analysis, our method still maintains the 

superiority under the condition of ocean ambient noise. 

According to discussion and comparisons, it has 

demonstrated that DNMD is an efficient and appropriate 

approach to signal decomposition. DNMD can be used to 

obtain each component from the multicomponent signal under 

noise, chaos and ocean ambient noise.  
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