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Abstract—The recent efforts to extend measurement and com-
munication infrastructures in power grids have brought about
new potentials for a more efficient and optimized grid operation
using the data which become available. Due to this integration,
on the other hand, not only the network expansion and planning
but also the development of new applications must be carried out
under consideration of the interdependencies between the power
grid and the underlying communication network. In this work,
we present a co-simulation environment and tool chain to enable
integrated planning and subsequent performance analysis of a
wide area measurement system. In the first part of the paper,
we investigate the performance of PMU-based state estimation
techniques under several power system and communication
network scenarios. In the second part of the paper, furthermore,
the presented setup is extended for co-simulative investigations
of the machine learning-based fault detection and classification
techniques in power systems. The presented results not only
validate the developed software solution for similar research
studies but also scrutinize the impact of communication network
performance on power system state estimation and PMU-based
decision-making for fault detection and classification.

Index Terms—cosimulation, power system, communication net-
work, machine learning, wide area measurement and protection

I. INTRODUCTION

Recent advances in information and communication tech-
nologies (ICT) have stimulated significant developments in
the utilities sector thanks to advanced monitoring and data
analysis techniques. As a result of the increasing penetration
of measurement and communication infrastructures, which are
called wide area measurement systems (WAMS), into power
grids, new applications and concepts have arisen, such as
demand side management or virtual power plants [3], along
with new system monitoring, situational awareness, and pro-
tection applications which also became possible thanks to the
data made available by the phasor measurement units (PMU).
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On the one hand, these developments pave the way for the
successful integration of renewables and a more efficient grid
operation. On the other hand, the planning of grid expansion
and the operation of the grid have become more complex tasks
as a result of the interdependencies between the power grid,
the ICT infrastructure, and new applications. The concerns on
reliability and security of the future grid necessitate, there-
fore, interdisciplinary approaches for the development of new
technologies, algorithms, and applications in all three domains
of communication networks, power systems, and applications
which are based on the sensor data.

In our recent work, we proposed a novel optimization model
which enables a minimum-cost design of a WAMS with a
hierarchical heterogeneous communication network [4]. The
proposed approach delivers both the required number and
locations of phasor measurement units (PMU) and phasor data
concentrators (PDC) for observability of the whole power sys-
tem, and a hierarchical heterogeneous communication network
design under data communication requirements in alignment
with IEEE Standard for Synchrophasor Data Transfer for
Power Systems [5]. Although planning techniques, such as the
one presented in [4], are valuable as a structured approach,
it is of crucial importance to further analyze the system
performance in numerical simulations considering different
network scenarios. In this context, a co-simulation environ-
ment for the simulative analysis of integrated WAMS planning
approaches has been presented in our another recent work [1].
Apart from the integrated planning and simulation of WAMS,
the use of PMU data in various situational awareness and
decision-making systems is another recent focus in the power
system research, especially regarding the big data analysis
techniques, see, for example, [6], [7], and [8]. In this context,
we have proposed a novel approach for the training of machine
learning (ML)-based fault detection techniques in our another
recent contribution [2].

In the current work, we provide a combined and compre-
hensive presentation of the co-simulation framework presented
in [1] along with the extensions of fault detection algorithm as
presented in [2]. Furthermore, the results presented in [2] are
validated in the co-simulation environment [1]. Therefore, the
current work is a further step towards a comprehensive plan-
ning and co-simulation of measurement, communication, data
analysis, and decision-making functions in an energy manage-
ment system based on our previous contributions in [4], [1],
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Fig. 1. Hierarchical network architecture of WAMS. PMUs send the phasor
measurements, time-stamped by the GPS signal, to a SuperPDC over inter-
mediate PDCs [5].

and [2].
The rest of this paper is structured as follows: We start

with a brief note on the details and the operation of a WAMS
in Section II, which is followed in Section III by an extended
presentation of the co-simulation framework which has already
been published in [1]. Particularly, we reveal the details on the
extension of open-source communication network simulator
OMNeT++ in Section III-B, as we believe that an in-depth
understanding of OMNeT++’s software architecture will be a
key for interested researchers to minimize the development
time and programming effort in similar research studies.

In the second part of the paper, i.e., in Section IV, we extend
the framework presented in [1] further for the investigation
of wide area protection applications which use synchropha-
sor measurements. In particular, we integrate external ML
libraries in the ICT simulator OMNeT++ and facilitate the
co-simulation of a particular fault detection technique, which
we proposed in our recent work [2]. We conclude the paper
in Section V with a summary and final remarks.

II. WAMS ARCHITECTURE, OPERATION, AND PLANNING

A WAMS consists of i) PMUs, which measure the voltage
and current phasor values available at the system nodes
where they are installed, ii) several data concentrator units,
called PDCs, and iii) a data processing center, called Su-
perPDC (SPDC). IEEE Standard for Synchrophasor Data
Transfer for Power Systems [5] lays down the architecture
for the communication network in a WAMS as shown in
Fig. 1. This architecture postulates a hierarchical transmission
of sensor data from PMUs to PDCs, where a preprocessing of
the data takes place such as time alignment and consistency
check [4]. PDCs send the data to a central unit SPDC, where
the measurement data from a larger part of the network are
aggregated to execute energy management functions such as
state estimation, cf. [9]. We will revisit the function of time
alignment in Section IV, where we investigate ML-based fault
detection for situational awareness applications.

Due to the increasing importance of WAMS in the operation
of power grids, numerous integrated planning approaches have
been proposed recently, see for example [10]–[13] and [4] for
a comprehensive discussion. The planning approach, which
we presented in [4], reveals i) the required number and exact
locations of PMU and PDCs for complete observability of
the power system, ii) the required communication network,
which includes the locations and capabilities of necessary
telecommunication equipment to install along with required
links and their technologies, iii) a guarantee for the fulfillment
of the capacity and delay specifications, and iv) insights
about the operation of the network, such as the utilization
of the communication links and the overall robustness and
the reliability of the network. Not only the joint formulation
of the optimization problem but also the consideration of
multiple communication technologies leads to exhaustion of
the cost-saving potentials. For the details of the mathematical
optimization model, please refer to [4]. In the next section,
we provide an extended description and details of the co-
simulation framework which enables the integrated planning
of a WAMS and its subsequent simulative performance anal-
ysis [1].

III. PART I : A CO-SIMULATION FRAMEWORK FOR
INTEGRATED WAMS PLANNING AND SIMULATION

The integration of multiple individual domain-specific and
powerful simulators as a cooperative simulation environ-
ment (co-simulation) for power grid simulations has received
continuous attention from power system and communication
researchers in last two decades. The advantage of a co-
simulation is the possibility to benefit from thorough and
precise models which are available in individual simulators
in order to create an overall close-to-reality mathematical
model of the system components. One of the early works in
this context is [14], which proposed a run-time environment
bridging independent power system and communication net-
work simulators. [15] brings forward the idea of global event-
driven co-simulation for smart grid simulations. Apart from
independently developed co-simulation architectures such as
the ones in [14] and [15], there are in the meantime generic
open-source libraries, which are designed to connect several
simulators in a co-simulation setting, such as MOSAIK [16]
which is used in this work. Interested readers may refer to [17]
and [18] for a broader view and surveys on the co-simulation
of power systems and communication networks.

As far as the analysis of WAMS is concerned, the increasing
importance of WAMS for the success of future applications led
the WAMS simulation to be one of the key fields where similar
co-simulation approaches proved valuable. For instance, [19]
uses the global event list approach of [15] to analyze the
effects of communication network on the performance of wide
area protection. Similarly, [20] presents a test-bed for the
investigation of communication link delays on the wide area
monitoring, whereas [21] uses a co-simulation environment for
the analysis of state estimation in a WAMS with a WiMAX
communication network. The mentioned studies conclude in
consensus that the interdependencies between the power grid

H. A. TOKEL et al.: A CO-SIMULATION FRAMEWORK FOR INTEGRATED PLANNING AND ANALYSIS 41



applications and the communication network must be consid-
ered in the planning phase.

The key contributions of the current work in the context
of co-simulation of WAMS are the consideration and the
implementation of the integrated planning approach as a pre-
step prior to co-simulation in order to further accelerate the
design and analysis process. Therefore, in this section we
present the details of the co-simulation environment and tool
chain which enables an integrated planning and a subsequent
simulative performance analysis of the designed WAMS.

In the following, we first introduce the entire co-simulation
environment used in this section, consisting of OMNeT++ [22]
as the communication network simulator and MatDyn [23]
as the dynamic power system simulator along with the co-
simulation interface MOSAIK [16]. In Section III-B, we intend
to provide researchers from various fields with a flexible
solution to extend OMNeT++ for similar co-simulation or
hardware-in-the-loop requirements. In Section III-C1, we use
the presented tool chain for the planning and co-simulation of
a WAMS, whose topology is obtained with the optimization
model in [4] for the IEEE 14-bus network. Particularly, we
investigate the effect of the communication link delays and
node failures on the accuracy of the power system state
estimation, as well as the behavior of the state estimators under
abrupt changes in the power system state.

A. Simulation Tools and Co-Simulation Environment

We start with an introduction of OMNeT++ and MatDyn,
and then present the co-simulation environment with the co-
simulation interface MOSAIK.

OMNeT++ is an extensible, modular, component-based C++
simulation library and framework, primarily for building net-
work simulators [22]. It is a discrete-event simulation (DES)
tool, in which the simulation time progresses as the discrete
simulation events, kept in an event list, are executed in
the order of execution. An event can be any interaction or
change in the system, such as an arrival of a packet or an
expiry of a timer. The execution of events is governed by
an event scheduler. The default scheduler in OMNeT++ is the
sequential scheduler which executes all the events sequentially
until the end of the simulation [1], [22].

MatDyn is a free MATLAB based open-source program
to perform dynamic analysis of electric power systems [23].
It is based on the power flow and optimal power flow
solutions by the steady state power system analysis toolbox
MATPOWER [24]. The simulation in MatDyn progresses as
the system of differential algebraic equations (DAE), which
governs the power system, is solved iteratively to calculate the
system parameters at the next step depending on the generator
and load models [1]. For the details of the mathematical
models used for the generators and the solutions of DAE
systems, please refer to [23].

The most critical issue in a co-simulation with a dynamic
power system simulator like MatDyn and a communication
network simulator like OMNeT++ is the implementation of
a time synchronization mechanism which would ensure a
correct progress of the simulation time and a timely data

Fig. 2. The advance of simulation time in dynamic power system simulator
MatDyn and discrete-even communication network simulator OMNeT++ [1]

exchange between the simulators. The underlying reason is
the different natures of both simulators regarding the progress
of the simulation time. The simulation time in a dynamic
power system simulation advances with fixed intervals due
to the iterative solution of a system of differential algebraic
equations. In contrast, the simulation time in a discrete-
event communication network simulator progresses with the
execution of events which are unevenly distributed on the
time axis. Fig. 2 depicts the flow of simulation time in both
simulators. Several researchers have recently dealt with the
selection of a proper synchronization approach for smart grid
simulations. [25] provides an overview of several approaches
and a comparison between them in terms of run time and
scalability. In [15], a global event list has been proposed
for the consistent execution of events by the co-simulation
interface. This approach, however, requires the implementation
of a global event management interface. On the other hand, the
most intuitive way to realize a synchronization mechanism is
to run both simulators independently for a certain step size
and then facilitate the required data exchange between the
simulators at the end of each step as adopted by the tools
EPOCHS [14] and MOSAIK [16]. This approach reduces
the programming effort to create a run-time infrastructure
for the management of the events. Furthermore, it enables a
trade-off between the simulation run time and the accuracy
of the co-simulation with the selection of a proper step
size. In the current work, we use the tool MOSAIK due to
its generic structure, convenience, and the available detailed
documentation [26].

MOSAIK provides an API to enable a communication and
data exchange with and between simulators through TCP sock-
ets and messages encoded in JSON data format. Therefore, it is
necessary to extend the available simulators with this interface
and message handling functionalities in order to use them
in a co-simulation with MOSAIK. Whereas MatDyn can be
extended relatively easily for a co-simulation with MOSAIK
due to its transparent structure, the extension of OMNeT++
requires a deeper understanding of its software architecture.
Therefore, we briefly discuss the extension of OMNeT++ in
the following sub-section.

B. Extension of OMNeT++

The modular architecture of OMNeT++ is depicted in Fig. 3
along with the different libraries of OMNeT++ simulation
environment and their relations. In Fig. 3, the model com-
ponent library contains definitions of modules, channels, and
classes along with their implementation which can be used
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Fig. 3. Modular software architecture of OMNeT++, adapted from [28].

Fig. 4. Extended modular software architecture of OMNeT++. A co-
simulation environment and a co-simulation user interface class have been
implemented, along with the external communication interface over TCP
sockets, extended based on [28], [1].

in a simulation, and executing model represents the class in-
stances which are created in a particular simulation. Simulation
object is the simulation kernel and the class library, whereas
envir is the base environment library which is common to
all implemented user interfaces, such as command environ-
ment (Cmdenv) and graphical user environment (Tkenv)
shown in the rightmost box.

In order to enable a flexible solution for the co-simulation
with MOSAIK, we extend the main() function of OMNeT++
and introduce a new base environment class along with a new
user interface class. The proposed extended architecture is
shown in Fig. 4. The extensions in the main() function enable
the user to provide external simulation settings from MOSAIK
so that the simulation can be started with different parameters,
input topologies and design requirements without any change
in the .ini files. On the other hand, the new simulation envi-
ronment class cosimulation envir and the co-simulation user
interface Cosimenv enable the progress of the simulation in
steps with a step size determined by the co-simulation interface
MOSAIK in a similar way which was proposed in [27]. A step
is implemented by a simulateStep() function in Cosimenv,
which executes all scheduled simulation events until the next
synchronization point. After the execution of each simulation
step, a data exchange for the co-simulation synchronization
takes place via the TCP socket interface.

The external input received from MOSAIK, which contains,
for example, the next synchronization time and the new
attribute values of module parameters, such as measurement
values from the power system, is received in JSON format

on the TCP socket. Any external input is here imaginable
depending on the investigated scenario. For example, com-
munication link and node failures, or changes in the system
parameters can be introduced to investigate their impacts
on the network. This external input is then passed by the
Cosimenv class to a network module, which we call co-
simulation gateway and is located in the executing model
referring to Fig. 4, by updating one of its parameters with
the JSON string value of the external input received at the
synchronization time. This solution was chosen to benefit from
the handleParameterChange() method of cComponent class,
from which all other OMNeT++ simulation modules inherit.
handleParameterChange() method of a network module is
called when a parameter of the module is changed by another
mechanism, in this case by the introduced co-simulation user
interface class Cosimenv. Thus, this method of the co-
simulation gateway class is implemented in such a way that
it reads the external input from its parameter and notifies
all other necessary modules in the network through a direct
message including relevant information right before the start
of the next step. This relatively simple approach enables a
structured communication between the co-simulation interface
and any network module in the executing model referring to
Fig. 4.

As for the messages from OMNeT++ towards the co-
simulation interface, the same procedure takes place in the
reverse order. The messages from individual modules are
passed to the co-simulation gateway via direct messages.
After each step, the simulation environment checks for a
possible output message in the co-simulation gateway and
sends it to the co-simulation interface. As a result of this
setting, the requirements for a co-simulation with MOSAIK
are effectively and efficiently fulfilled. Moreover, all inherent
functionalities of OMNeT++ can be used in the new co-
simulation environment.

C. Design and Simulation of a WAMS for IEEE 14-Bus Test
Network

In this section, we describe the steps in the planning and
simulation of a WAMS for the IEEE 14-bus test network with
the presented co-simulation environment [29]. The network
data are provided as an input in the MOSAIK script, and both
simulators are initialized with the given network topology in
their domains. The planning step of WAMS, i.e., the solution
of the mathematical model in [4], takes place in OMNeT++
with all relevant constraints regarding the telecommunication
technologies and the system requirements, using Gurobi 7.0
as the solver [30]. After this step, the PMU locations are
conveyed to MatDyn through the co-simulation interface MO-
SAIK.

MOSAIK governs the flow of the co-simulation with a
step-wise execution of individual simulators, where at each
synchronization point, the power system simulator sends the
measurement values to the communication network simulator.
The measurement values are then sent to the SPDC node in
OMNeT++ where the state estimation takes place. Any control
command from this module can be then sent back to the other
communication network nodes within OMNeT++.
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1) Use Case : PMU-Based Linear State Estimation: As
a concrete example use case, we investigate the accuracy
of two PMU-based linear state estimation techniques using
the introduced co-simulation environment. Therefore, in the
following, we briefly introduce the two techniques, namely
linear weighted least square (LWLS) state estimation and
discrete Kalman filter (DKF) state estimation for one-phase,
based on the assumption of a balanced 3-phase system [31].

We define the system state x of a power grid with n buses
by the vector

x = [V1,re, . . . , Vn,re, V1,im, . . . , Vn,im] (1)

where Vn,re and Vn,im are the real and the imaginary parts of
the voltage phasor Vn at node n, respectively. The vector of
measurements is denoted by

z = Hx + e, (2)

where H is the measurement matrix, which describes the
linear relation between the measurement z and the state
vector x, while e is the vector of measurement error. It is
assumed that the measurement errors are independent and
zero-mean Gaussian distributed, i.e., e ∼ N (0,R), where
R = diag(σ2

1 , . . . , σ
2
n) is the covariance matrix, with the

variances σ2
i of the noise components ei as its diagonal entries.

2) Linear Weighted Least Square State Estimation: The
LWLS estimator tries to find the state vector, which minimizes
the weighted sum of the squared error in the measurements as

minimize
x

J(x), (3)

where J(x) is defined by (z − Hx)TR−1(z − Hx). The
analytical solution of (3) is calculated as

x̂LWLS,k = G−1HTR−1zk, (4)

where k is the time index, and G = HTR−1H . Note that in
this particular work R and therefore G do not vary over time.

3) Discrete Kalman Filter State Estimation: The general
DKF is a widely used filter to estimate the state of a system
which can be described by the equations

xk = Axk−1 + Buk−1 + wk−1, (5a)

zk = Hxk + vk, (5b)

where A is the matrix that relates xk to xk−1, B is the matrix
that relates the control input u to the next system state xk,
and wk and vk are the process and measurement noises with
known covariance matrices Qk and R, respectively. Note that
w and v are assumed to have zero cross-correlation.

DKF makes use of a priori estimate x̃k that can be
calculated based on the last estimate x̂k−1 and the available
system information. Thus, the prediction error ẽk and the
estimation error ek are defined as

ẽk = xk − x̃k, (6a)

ek = xk − x̂k, (6b)
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Fig. 5. The minimum cost WAMS topology with the optimum locations of
PMUs and PDCs and the optimum communication network topology, obtained
by the optimization model in [4]

with corresponding prediction error covariance matrix
P̃k = E(ẽkẽ

T
k ) and estimation error covariance matrix

Pk = E(eke
T
k ), where xk denotes the true system state. The

estimation of the next system state consists of two steps. In
the first step, which is called prediction, a priori prediction x̃k

for the next system state and the error covariance matrix are
calculated as

x̃k = Ax̂k−1 + Buk, (7a)

P̃k = APk−1A
T + Qk−1. (7b)

The estimation step then follows as

Kk = P̃kH
T (HP̃kH

T + R)−1, (8a)

x̂k = x̃k + Kk(zk −Hx̃k), (8b)

Pk = (I −KkH)P̃k, (8c)

where K is called Kalman gain. In this work, we adopt the
auto regressive integrated moving average (ARIMA) process
model, i.e., A = I and B = 0 and that the last state estimate
is a good approximation for the next system state as discussed
in [32] and [31].

4) WAMS Topology and Simulation Parameters: The
minimum-cost WAMS topology for the IEEE 14-bus test
network is shown in Fig. 5. Note that the node locations
are not included in the power system data [29], but approx-
imately generated in this work on a region of 5 km × 5 km
for the design of a communication network. Furthermore,
the planning is based on the assumption of available power
line communication (PLC) links with a capacity of 250 kbps
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Fig. 6. A sudden load increase of 10% is applied at node P9 at t=5s. DKF
performance degrades due to the abrupt change.

and fiber links with a capacity of 1 Gbps. For further cost
assumptions, please refer to [4].

The traffic generation parameters of a PMU in the commu-
nication network are chosen in alignment with the IEEE Stan-
dard for Synchrophasor Data Transfer for Power Systems [5]
with a measurement frequency of 50 Hz and the overhead of
UDP/IP layers. The step size of the co-simulation and the
power system simulation is set to 10 ms, and a state estimation
of the power system has been performed each ms at the SPDC.
The PMU measurement errors are assumed to be independent
with an SNR of 30 dB.

The accuracy of the state estimation at time instance k is
assessed with the metric of total vector error (TVE) defined
in [5] as

TVEk =
|x̂k − xtrue,k|
|xtrue,k|

, (9)

where xtrue,k is the actual state vector at time instance k, and
x̂k is its estimate at the SPDC at time instance k.

The simulation duration is set to 10 s during which a sudden
load increase of 10% is applied at node P9 at t = 5 s. This
scenario is then simulated with the following communication
network scenarios :

(i) PLC links with a data rate of 250 kbps, which is used in
the optimum topology,

(ii) PLC links with 230 kbps,
(iii) a router failure at node P6 between t = 4 s and t = 6 s,

and
(iv) bit error rate (BER) of 1x10−6 and 2.5x10−4 on PLC

links with a data rate of 250 kbps.
In the next subsection, we present and discuss the accuracy of
the state estimation observed in the simulations.

5) Results & Discussion: Fig. 6 shows the accuracy of
LWLS and DKF state estimators where the PLC links are
simulated with a data rate of 250 kbps as in the optimum
topology. We observe that DKF performs significantly superior
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Fig. 7. A sudden load increase of 10% is applied at node P9 at t=5s. Degra-
dations in the communication network performance leads to a deterioration
of state estimation accuracy.

until the abrupt load change at t = 5 s in alignment with the
results in [31], however, its performance degrades significantly
afterwards. Therefore, the comparison and analysis of state
estimation techniques, such as recently proposed distributed
approaches, must be carried out under several stress scenarios
for reliable conclusions.

Moreover, Fig. 7 illustrates the degradation in the DKF
state estimation accuracy in the four cases listed in Sec-
tion III-C4, where communication link performance degrada-
tions and router failures are simulated. We observe that in all
of the simulated cases, the accuracy of system state estima-
tion deteriorates significantly by the failures and performance
degradation in the communication network.

Note that the state estimate at SPDC is the basis for the
control and protection actions to be applied in the power
grid operation. The correct interpretation of the state estimate
along with the information about the packet delays is of
crucial significance for a proper system operation. Therefore,
the state estimators and the wide area protection and control
algorithms must take into account also the communication
network performance.

The co-simulation solution presented in this work enables
the investigation of communication network impacts on the
WAMS operation. Our further aim in the rest of this work is to
integrate synchrophasor-based decision-making functionalities
in our framework. Therefore, in Section IV, we first briefly
introduce the fault detection technique as presented in [2].
Afterwards, we validate the results presented in [2] by using
the co-simulation framework.

IV. PART II : ML-BASED FAULT DETECTION AND
CLASSIFICATION IN CO-SIMULATION

In Section III, we presented the details of the co-simulation
environment with an application of power system state es-
timation. In this section, the ICT simulator part is further
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Fig. 8. A possible observation of two PMU streams, which originate from
different PMUs. A fault causes detectable changes (illustrated by a change
of color) in signal patterns at time t0, whereas the changes are observed at
time t0 + d1 and t0 + d2 at SPDC for Stream 1 and 2, respectively, adapted
from [2].

extended with the functionalities of data analysis and decision-
making for the performance analysis of fault detection and
classification technique presented in [2].

The rest of this section is structured as follows: In Sec-
tion IV-A we deepen our discussion on the operation principle
of WAMS regarding the communication delays and situa-
tional awareness applications based on PMU measurements,
followed in Section IV-B by a note on the recent contributions
regarding power system fault detection. In Section IV-C, we
summarize the details of the implemented fault detection
scheme in [2] for the reader’s convenience. In Section IV-D,
we present the results of the simulation study by means of the
co-simulation framework introduced in Section III.

A. Communication Delays and Decision-Making in WAMS

As introduced in Section II, a WAMS has a hierarchical
architecture in which PMU measurements are sent to a PDC
and then to the SPDC. As further specified in the related
standard for data concentrators [33], for each time stamp,
the PDCs align and combine the received measurements in
a single packet, which is sent to the SPDC. In this task, the
PDC waits for each time stamp a certain amount of time,
referred to as wait time, before sending the packet. Hence,
the measurements experiencing a larger communication delay
than the wait time will not be available at the SPDC with
this packet. Moreover, the standard discusses and allows the
deactivation of time alignment functionality for time-critical
applications, in which all measurements are forwarded to the
SPDC without a wait time [2], [33].

Therefore, the observation of the system state in the SPDC
will be affected by measurements with different, but known
delays. This information is also used by the state estimation
function by assigning weights to different measurements based
on their delay, for example with a weighted least squares
estimator as introduced in Section III-C1, please refer to [34]
for a thorough study of power system state estimation. There-
fore, the output of the state estimator inherently contains
information about the network delays [2].

An illustration of the delayed arrival of measurements
is provided in Fig. 8 for two measurement streams which
originate from different PMUs. Note that the pattern changes

in the signals due to a fault at t0, which are illustrated by a
change of color and background, are observed at the SPDC
with delays of d1 and d2, respectively. In addition to the
available measurement values, the information of the delays is
also available due to the time stamps. (Note that the estimation
error is not illustrated in Fig. 8.) The central idea of the
implemented approach in this section, which we proposed
in [2], is to leverage this information in order to detect the
system disturbances faster and reliably.

B. Power System Fault Detection and Classification

The faults in power systems can be detected and classified
by utilizing the pattern changes in the current and voltage
signals in case of a fault [35]. The methods vary from hand-
coded expert-defined rules based on certain thresholds to
artificial intelligence-based techniques, such as artificial neural
networks (ANN), support vector machines, and fuzzy decision
systems [6], [36]. Several features and transformations of the
signals have been proposed and used for detection purposes
like Fourier and wavelet transforms [36].

Although the protection of critical lines and system buses
is ensured with local protection equipment like relays and
circuit breakers [35], the data made available by PMUs offer
the potential to increase the understanding and situational
awareness in an energy management center as also proposed
in [7] using the output of a PMU-only state estimator for fault
detection and classification. Furthermore, the correct and fast
detection of the fault location and the identification of the
fault type play an important role for the service restoration
and the network reconfiguration which are required after a
system fault.

In this context, the approaches in [6] and [7] use decision
trees, and [8] employs support vector machines for detection
of the faults. However, these approaches assume, as discussed
above, complete presence of all the measurements in perfect
synchronization during the training phase of the ML-based
techniques. In the following, we briefly introduce our contri-
bution presented in [2] about the ANN-based fault detection
and classification which makes use of training with delayed
measurement information for a better performance.

C. ANN-Based Fault Detection and Training Scheme

ANNs, in particular the feed-forward back-propagation mul-
tilayer perceptrons (MLPs), have been shown to provide out-
standing performance in pattern recognition and classification
applications [37]. As indicated in its name, an MLP consists of
one or more hidden layers other than the input and the output
layers. Each hidden layer has a non-linear activation or transfer
function which enables the extraction of the key features in
big data sources. This approach is particularly beneficial in
problems where a mathematical model for the relation between
input and target vectors is difficult to obtain.

An MLP classifier is trained by the supervised back-
propagation learning method, where a set of N ∈ N labeled
input feature vectors, referred to as a training set, is fed into
the classifier to iteratively optimize the weights of the neurons
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Fig. 9. The topology of the IEEE-13 bus test feeder [38]. A fault detector and
classifier for the line between 671 and 692 is implemented and investigated.
The PMUs shown in black and white boxes are assumed to send their data
to different PDCs. A failure of black PMUs is also simulated.

in its hidden layers. In the current work, the training set T with
N input-target pairs can be written as

T = {(xn,yn) ∈ RM × {0, 1}K | n = 1, . . . , N}, (10)

where xn ∈ RM is the input feature vector as the state of
the power system as introduced in (1), yn = [yn1, . . . , ynK ]
is the target output vector which refers to target class of the
corresponding input vector xn, and K denotes the number
of possible target classes. The target yn is an all-zero vector
except ynk = 1 corresponding to the kth class to which xn

belongs, where k ∈ {1, . . . ,K}. Note that, for a fault detection
problem, K is equal to 2, referring to the occurrence of a
fault or a normal operation. In the current work, the input
feature vector xn ∈ RM is the output of the state estimator
which consists of the per unit voltage magnitudes as well as
the voltage angles of all the system buses.

In the training of an MLP, the back-propagation algorithm
updates the weights via the stochastic gradient descent method
such that a certain objective function is iteratively minimized.
In this work, the utilized objective function during the training
phase is the cross entropy, which is defined for the set
Θ = {W(`) | ` = 1, . . . , L} of weights for L ∈ N number
of hidden layers as

J(Θ) = −
N∑

n=1

K∑
k=1

ynk log ŷnk(Θ), (11)

where W(`) ∈ Rr`×r`−1 is the weight matrix of the hidden
layer `, which has r` neurons, and ŷnk(Θ) is an estimate
of ynk, such that ŷnk(Θ) = f(Θ,xn). In this content, f(.)
denotes the trained MLP model for either fault detection or
classification problems. In the current work, MLP detectors
have three hidden layers each with 20 neurons. Furthermore,
the softmax transfer function has been utilized at the output
layer, whereas the hyperbolic tangent sigmoid transfer function
is used as the activator in the hidden layers. For a comprehen-
sive treatment of MLPs, please refer to [37], [39].

The key idea of the detection technique that we proposed
in [2] is the training of ML-based algorithms considering the
delayed arrival of the measurements. In [2], this approach has
been presented and validated by simulated data of the IEEE
13-bus test feeder using the open source distribution system
simulator OpenDSS [40] and the neural network toolbox
of MATLAB [41], with the following methodology and the
parameters:

The generation of the training data for normal and faulty
state conditions is carried out in a similar manner which is
used in [42] and [43], for faults on the line between the buses
671 and 692. The topology of the test network is shown in
Fig. 9. Note that the PMUs shown in black and white boxes
are assumed to send their data to different PDCs. The fault
resistances are simulated as 1 Ω and 5 Ω. The normal and
faulty state conditions are simulated under various load condi-
tions, where the voltage and current phasor measurements are
governed by zero-mean additive white Gaussian noise with an
SNR of 30 dB.

In [2], two feed forward ANN fault detectors have been
trained with back-propagation. In the first one, the commu-
nication delays are not considered, i.e., the output of the
state estimator, when noisy synchronized measurements for
each time instance are given as the input, is used as the
input feature vector and the corresponding system state as the
target class, i.e., normal or faulty state. In the second one,
on the other hand, the measurements from different PMUs are
assigned random communication delays drawn from a uniform
distribution with the support [dmin, dmax]. The output of the
state estimation has been then marked as faulty operation as
soon as a measurement value which is recorded after the
fault occurrence arrived at the SPDC [2] in order to train
the neural network under consideration of delayed arrival of
measurements.

In the next sub-section, we present the results regarding the
performance of the trained fault detectors in the co-simulation
framework.

D. Results in Co-simulation Framework
In the scope of the current work, we have integrated the fault

detectors presented in [2] for faults on the line between the
buses 671 and 692 in our co-simulation framework. For this
purpose, the neural network toolbox of MATLAB is externally
integrated to OMNeT++ by using the C API provided by
MATLAB. Furthermore, OpenDSS has been connected to
MOSAIK through MATLAB using its COM interface [40].

For a performance analysis, we carry out Monte Carlo
simulations where the communication delays between a PMU
and PDC are drawn uniformly from the interval [10, 70] ms,
and the communication delays between a PDC and the SPDC
are drawn uniformly from the interval [10, 20] ms in each
simulation. The PMUs are set to operate with a reporting rate
of 100 frame per second, whereas a state estimation is executed
each ms at the SPDC. In the setting of the co-simulation, the
state estimates calculated in OMNeT++ are fed into the fault
detector in MATLAB which then gives the current operation
status as normal or faulty back to the communication simulator
OMNeT++.
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Fig. 10. CDF of the fault detection time in 9000 test cases when the individual
PMU-PDC and PDC-SPDC communication delays are uniformly drawn from
the intervals [10,70] and [10,20] ms, respectively, in each simulation.

Fig. 10 illustrates the cumulative distribution func-
tion (CDF) of the achieved fault detection time over all test
cases (9000 test cases for each curve) for both considered
training methods. We define the detection time td as the
duration between the occurrence of the fault and the detection
of the fault by the detector at the SPDC. The curves without
markers show the results for the training with delayed data,
whereas the curves with markers illustrate the training with
the synchronized data. Furthermore, the dotted lines show the
results for the cases when the PMU data originating from
black PMUs are lost due to a PDC failure, see Fig. 9. Note
that the step-wise CDF plots are due to the time step of state
estimation, which is equal to 1 ms.

Referring to Fig. 10, we observe a superior performance of
the proposed training scheme in the co-simulation framework
in alignment with the results presented in [2]. Especially,
we observe a considerable improvement in the tail of the
distribution, i.e. in the maximum detection time. Therefore,
the proposed approach can significantly reduce the detection
time. Note that a higher variation of the communication
delays of individual PMUs would lead to a more significant
improvement in terms of absolute detection time.

Similarly, a superior performance is observed in the case of
the loss of PMU data originating from black PMUs due to a
PDC failure, see Fig. 9. Therefore, it can be concluded that
the proposed approach is more robust in case of failures in the
communication network.

V. CONCLUSION

In this work, we have introduced a co-simulation environ-
ment and tool chain for the integrated planning and subsequent
integrated simulative performance analysis of a WAMS. As an
example application, the impact of communication network
performance and failures on the state estimation accuracy has

been investigated, where linear weighted least squares and dis-
crete Kalman filter techniques are implemented. Furthermore,
we have integrated a machine learning-based fault detection al-
gorithm for protection and situational awareness applications.
The co-simulation framework presented in this work provides
a useful environment for future work in the development and
analysis of distributed state estimation, optimization, and fault
detection algorithms under consideration of the interdependen-
cies between power grids and communication networks.
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