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Abstract — The Software Defined Networking (SDN) gained 

recognition due to its improvements at the packet switching and 

routing layers. The benefits of programmable, remotely 

controllable networking devices can be applied to the optical layer 

of contemporary networks as well. This work introduces 

CESNET's Czech Light~® family of devices and their role in 

enabling the SDN approach within the CESNET's production 

network. As a case study, an upgrade of the Cheb node in 

CESNET's network from a hard-spliced add-drop multiplexers to 

SDN-capable Reconfigurable Optical Add-Drop Multiplexers 

(ROADM) is presented. The upgrade improved operational 

capabilities of the network, including remote channel equalization, 

and the possibility to deploy new channels or lambdas without 

physical intervention. The deployment of ROADM also improved 

the optical properties of the network. 

 

Index terms — Optical fibre network, metropolitan area 

network, software-defined network, OpenFlow, photonics. 

 

I. INTRODUCTION 

 

 National research and education networks (NREN) provide 

connectivity for universities, research centres and other 

advanced users. Their backbone networks use dense 

wavelength division multiplexing (DWDM) coherent 

transmission systems rather routinely, and the data rates of 100 

Gb/s are quite common. Successful 1 Tb/s trials have been 

performed in networks where dark fibres are abundant and 

available for experiments [1] [2].  

 In contrast to the core, the transmission capacity situation is 

rather different in access parts of the networks. The DWDM 

systems are not deployed commonly and transmission speeds 

are usually limited to 10 Gb/s. [3] Sometimes the legacy time 

division multiplexing (TDM) technology is still used. [4] This 

stark contrast with the backbone networks is often caused by 

economic reasons as upgrades are not conducted that often.  

 This situation presents an obstacle for certain new scientific 

applications with rather special requirements. Examples of 

these are an accurate time transfer, or a very stable frequency 

transfer. For these applications, increasing the transmission 

speeds to 100 Gb/s or even 1 Tb/s is not important and will not 

help when such applications are deployed [5]. The reason for  

this constraint is that the time and/or frequency transfer is not 

about ‘big data’ transfers, but rather about stable and very low 

jitter. An accurate time transfer uses speeds well below 1 Gb/s.  
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A transmission of stable frequency consists of a so called 

continuous wave (CW) signal, i.e., a signal without any 

modulation because the frequency of photons is the useful 

property of the transmitted information, and any additional 

modulation would be superfluous. 

 These signals find application in various fields, for example 

sensing, metrology, navigation, geodesy, radio-astronomy, 

Earth surveying, seismology, fundamental physics, etc, as 

manifested by the EU joint research project NEAT-FT [6]. 

 Given the spatial properties of the access networks and the 

recent trends towards the flexibility of the deployed hardware 

and the “self-service” approach towards customer requests, it is 

important to minimize the need for manual reconfiguration of 

the in-field hardware. [7] The Software-Defined Networking 

(SDN) approach in particular brought a new way of evaluating 

the network design. Instead of relying on autonomous devices 

with some built-in decision-making logic, there is a modern 

trend of lifting the control algorithms out of the actual active 

devices. In an SDN network, these devices are remotely 

controlled, and network topologies can change in response to 

dynamic events without a manual reconfiguration. [8] 

 This contribution describes our approach towards applying 

the SDN concepts towards the optical layer within the CESNET 

network. A notable difference from the work performed at 

SWITCH [3], our work focused on SDN use on top of 

bidirectional fibre links.  

 The challenges of the optical last miles along with CESNET’s 

solutions in terms of the Czech Light ® devices are described 

in chapters II and III, respectively. A practical case study about 

deploying SDN at CESNET’s node in Cheb is presented in 

chapter IV. Finally, the article wraps up with an overview of the 

future work (section V) and a summary (VI). 

 

II. OPTICAL LAST MILES 

 

 The issues related to last miles are well-known and all 

operators have learned to deal with them. Sometimes Last Miles 

have been dubbed as First Miles to emphasize their importance 

for high speed optical networking. In an NREN ecosystem, the 

last miles’ problems cannot be solved by means of wireless 

networking because capacity (or bit rate) is not large enough for 

big demanding applications. With the higher bit rates, one has 

to utilize higher carrier frequencies, but their reach decreases 

significantly. 

 One example of such demanding application can be the ultra-

high  definition   video  transmission   required   for   medical
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applications [9]. Moreover, new applications such as hard 

realtime controls require very low and constant jitter which can 

be satisfied successfully with an optical fibre [10]. Real-time 

network services are needed for an interaction with external 

processes, in other words for any processes running outside the 

network. Examples of these use cases include collecting dana 

from remote sensors or telescopes, or remote machine control. 

Importance of these topics can be found for example in the 

Strategy document for the pan-European network G´EANT for 

the 2020 time frame [7]. 

 These challenges are similar to what the adoption of clouds 

has meant for traditional networks. It is believed that moving to 

SDN even for the optical transport is a reasonable next step 

[11].  

 To provide new opportunities for the research, education and 

scientific community, CESNET has developed new equipment 

– the Czech Light ® family of advanced photonic devices. All 

of the Czech Light ® devices are open. The word “open” means 

that third parties are allowed to modify the Czech Light ® 

devices, so it is easy to deploy them in new networking 

scenarios. The Czech Light ® devices can be also customized 

by power end users, e.g., by augmenting them with a custom, 

specific control software. This is usually not possible with 

equipment from traditional big vendors. 

 At the time the Czech Light ® devices were first introduced 

to the market, the OpenFlow protocol, a staple of the 

southbound Application Programming Interfaces (APIs) in the 

SDN world, was not yet available. As of September 2015, the 

OpenFlow protocols do not yet provide a comprehensive suite 

of concepts related to L0/L1 control of the optical signal. The 

most promising candidate, the Optical Transport Protocol 

Extensions [12], is limited to the concept of switching. This 

leaves many important properties, such as manipulating the 

gains of the amplifiers at various frequency bands, undefined 

by the OpenFlow.  

 For these reason, the Czech Light ® devices are usually 

controlled through the Simple Network Management Protocol 

(SNMP). However, thanks to their inherent extensibility and 

their open firmware, users will be able to upgrade to a firmware 

which supports an OpenFlow-compatible control and 

monitoring when these standard become available and mature. 

 

III. CESNET’S SOLUTIONS FOR SDN IN THE LAST 

MILES 

 

 Dark fibres have been used in the CESNET network for many 

years. The first dark fibre was lit back in 1999, with Packet over 

SONET (PoS) technology with 2.5 Gb/s speed. At that time 

electro-optical regenerators for SONET/SDH were the primary 

option for extending the reach. Later on, optical amplifiers 

started to emerge, especially when optical gigabit Ethernet was 

deployed in metropolitan (MAN) and even wide area networks 

(WAN). 

 One of the first device developed by CESNET in their 

network were the Czech Light ® optical amplifiers (CLA). The 

most significant drawback of contemporary commercial 

offerings was the lack of standardized monitoring capabilities. 

Support for the de-facto standard Simple Network Monitoring 

Protocol (SNMP) was one of the key requirements for practical 

deployment for any NREN or Internet Service Provider (ISP). 

This is similar to the situation being addressed by the 

unification of the southbound SDN APIs, such as OpenFlow, 

where a set of common APIs facilitate interoperability and 

helps drive the costs of operation down. 

 The family of the Czech Light ® devices also include 

reconfigurable add-drop multiplexers (ROADM), wavelength 

selective switches (WSS) or tuneable dispersion compensators 

(TDC). All of these devices consist of the optical module, an 

embedded Linux system, and essential control electronics. The 

Czech Light ® devices are housed in a standard rack chassis of 

size 1U or 2U, and can be customized on demand.  

 Various Czech Light ® products are protected by several 

patents in the EU [13] and within the US [14] [15] [16]. As of 

2015, the Czech Light ® equipment is used on 4890 km of the 

CESNET networks, including 2012 km of bidirectional single-

fibre transmission. 

 

IV. CASE STUDY: DEPLOYING ROADM IN CHEB 

 

As a practical example of the utility of the SDN approach 

applied to the lowest photonic layer (L0 in the ISO/OSI model), 

we present the upgrade of one PoP in the CESNET network 

which was performed in 2011 at Cheb. Cheb is a site within a 

single-fibre bidirectional transmission path Plzeň-Cheb-Most-

Ústí nad Labem whose overall length is 320 km, see Figure 1. 

The original topology of the Cheb node is shown in Figure 2. 

 

 
Figure 1. Location of Cheb in CESNET’s network 

 
 Prior to this upgrade, various wavelenghts were distributed 

by means of a fixed, spliced-in Optical Add-Drop Multiplexes 

(OADMs) at Cheb. These relatively low-cost high-reliability 

devices came with a significant downside – any reconfiguration 

involved manual work and service interruption related to an 

onsite fibre re-splicing. Any change in optical spectrum 

allocation (channel allocation), even to an end-user site 

unrelated to Cheb, required a service interruption at Cheb 

because of the fixedspectrum properties of the OADMs. 

Furthermore, any change in attenuation along the transit path 

led to a need to perform a manual channel equalization in order 

to guarantee safe and efficient operation of the Erbium-Doped 

Fibre Amplifiers (EDFAs) along the way. Under typical 

scenarios and due to the technical aging of various components, 

including the amplifiers and fibre cables, channel equalization 
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Figure 2. The Cheb node prior to its upgrade 

 

had to be performed roughly every three months. This necessity 

translated to about four physical interventions on-site, with the 

inherent risk of affecting the other part of the infrastructure, and 

an associated downtime or service degradation.  

 During the upgrade, the fixed OADMs were replaced by a set 

of CL-ROADM devices, the Reconfigurable Optical Add- Drop 

Multiplexers. The new topology of the Cheb node is shown in 

Figure 3. For a whole-picture overview of the northwest area of 

CESNET’s network, please consult Figure 4. The north-western 

part combines long-range channels (370 km, 107 dB 

attenuation, 7 EDFAs) with much shorter channels (126 km). 

The upgrade brought along several improvements, including 

improvements to the optical properties, and improvements to 

operational capabilities.  

 

A. Improvements in Optical Performance 

 Each band splitter, or even an optical connector, are prone to 

a certain cross-talk. Given a typical booster amplifier 

configuration with an output power level of 10 dB, the crosstalk 

induced by the band splitter leads to about -30 dB of signal 

propagation back to a pre-amp, which is usually operating on 

incoming signal levels of around -25 dB. The channels are well-

spaced, so the noise affects mostly the effective gain of the 

preamp. These phenomenons are — to a certain extent — 

unique to bidirectional single-fibre transmissions.  

 As an additional bonus, the ROADMs were configured to 

stop propagation of noise on unused channels, which 

contributes to an overall decrease in noise levels along the path. 

Finally, the ROADM can be also used as a channel monitor. 

 

B. Improvements due to the SDN Properties 

 The improvements brought through the SDN control are 

mostly operational. First of all, it is now possible to perform 

channel equalization remotely. An operator can selectively 

adjust the signal strengths on different channels in order to 

better suite the operation of EDFAs deployed along the line. 

What used to require a manual, hands-on intervention at a 

remote side, including a physical splicing process, can now be 

performed remotely, using a software-controlled procedure. [8] 

In our experience, this new approach typically saves around 

four maintenance operations per year. 

 The key benefit of this upgrade, however, is the newly gained 

ability to deploy new lambda services or Alien Waves at Cheb. 

Eventual channel reallocation will not require physical access 

anymore. Because the network ring which connects Cheb is 

implemented through bidirectional, single-fibre light path, it is 

especially suitable for demanding applications, such as the time 

and frequency transfer. 

 

V. FUTURE WORK 

 

 Deployment of an SDN-capable hardware is just a first step 

towards leveraging all benefits of SDN in one’s network. In 

particular, even without an SDN controller taking care of the 

optical domain, the ability to remotely set all operational 

parameters of an optical device eliminates the need of on-site 

physical interventions. As of 2015, this is the state which we 

achieved in our CESNET network. 

 An important open challenge is integrating the knowledge of 

the optical layer with the SDN controller software — especially 

considering the implications of how the different layers of the 

network play together [11], and a lack of standard-based 

interoperable solutions. We are working on making the SDN 

capabilities of the optical layer available to researchers and 

students via an optical testbed [17]. In order to fully benefit 

from the SDN approach, further work is needed towards 
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Figure 3. The topology of the Cheb node after an upgrade to ROADM 

 

Figure 4. Figure 4. A big-picture overview of the north-western part of the CESNET’s network 
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standardization, understanding and modeling of the 

optical/photonic properties of the network and the deployed 

devices [18]. The SDN controllers also have to be taught about 

the existence of the underlying optical layer and its 

reconfigurability – all in a possibly multi-vendor, multi-domain 

environment. 

VI. CONCLUSION 

 

 In this paper, we presented the SDN capabilities of the Czech 

Light ® family devices and their deployment in the CESNET 

network. Our focus was on the CL-ROADM model and its 

application in the Cheb node of a single-fibre bidirectional 

transmission path. The upgrade brought improvements on two 

fronts: in the optical transmission itself, and in the operational 

capabilities of the network.  

 The optical transmission got improved through an overall 

lower noise levels, and through more optimized mode of 

operation of the amplifiers. 

 The improvements in the operation capabilities of the 

network are brought by the software-defined aspect of the 

ROADMs. We have gained a new capability to deploy 

advanced lambda services, and reduced the need to perform 

onsite tweaks which mandated physical presence. We expect 

that these light paths will be needed by our users in the coming 

years, for example in response to their need for a precise time 

or frequency signal transfer. 

 A key advantage of the SDN approach is our ability to 

provision the light paths or Alien Waves remotely, with no 

hands-on presence on site. 
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