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Abstract—Three secret sharing schemes that use the Mignotte’s
sequence and two secret sharing schemes that use the Asmuth-
Bloom sequence are proposed in this paper. All these five secret
sharing schemes are based on Chinese Remainder Theorem
(CRT) [8]. The first scheme that uses the Mignotte’s sequence is
a single secret scheme; the second one is an extension of the first
one to Multi-secret sharing scheme. The third scheme is again
for the case of multi-secrets but it is an improvement over the
second scheme in the sense that it reduces the number of public
values. The first scheme that uses the Asmuth-Bloom sequence
is designed for the case of a single secret and the second one is
an extension of the first scheme to the case of multi-secrets.

Novelty of the proposed schemes is that the shares of the
participants are reusable i.e. same shares are applicable even
with a new secret. Also only one share needs to be kept by
each participant even for the muslti-secret sharing scheme.
Further, the schemes are capable of verifying the honesty of the
participants including the dealer. Correctness of the proposed
schemes is discussed and show that the proposed schemes are
computationally secure.

Index Terms—Multi-Secret, Mignotte’s sequence, Asmuth-
Bloom sequence, CRT, Secret sharing scheme

I. INTRODUCTION

The requirement of the key being secret brings several

problems. Storing a secret key with only one person or server

or database reduces the security of the system to the security

and credibility of that agent. Besides, not having a backup of

the key introduces the problem of losing the key if a mischief

occurs. On the other hand, if the key is held by more than one

agent an adversary with a desire for the key has more flexibility

of choosing the target. Hence the security is reduced to the

security of the least secure or least credible of these agents.

Secret sharing schemes are introduced to solve these problems

of key management. The main idea of these schemes is to share

a secret among a set of agents such that only the predefined

coalitions can come together and reveal the secret, while no

other coalition can obtain any information about the secret.

Thus, the keys used in areas requiring vital secrecy like large-

scale finance applications and command control mechanisms

Manuscript received February 25, 2015; revised April 12, 2015.
A. Endurthi is with the Computer Science and Engineering Department,

RGUKT - IIIT Basar, Telangana State, 504107, India (e-mail: anjaneyuluen-
durthi@gmail.com)

O. B. Chanu and V. Ch. Venkaiah are with the School of Computer
and Information Sciences, University of Hyderabad, 500046, India (e-mail:
obidyapatichanu@gmail.com, venkaiah@hotmail.com)

A. N. Tentu is with the CR Rao Advanced Institute of Mathemat-
ics, Statistics, and Computer Science, Hyderabad, 500046, India (e-mail:
naidunit@gmail.com)

of nuclear systems, can be stored by using secret sharing

schemes.

Secret sharing was first proposed by Blakley[3] and

Shamir[4]. The scheme by Shamir relies on the standard

Lagrange polynomial interpolation, whereas the scheme by

Blakley[3] is based on the geometric idea that uses the concept

of intersecting hyperplanes.

The family of authorized subsets is known as the access

structure. An access structure is said to be monotone if

a set is qualified then its superset must also be qualified.

Several access structures are proposed in the literature. They

include the (t, n)-threshold access structure, the Generalized

access structure and the Multipartite access structure. In the

(t, n)-threshold access structure there are n shareholders. An

authorized group consists of any t or more participants and

any group of at most t − 1 participants is an unauthorized

group. Let U be a set of n participants and let 2U be its power

set. Then the ’Generalized access structure’ refers to situations

where the collection of permissible subsets of U may be any

collection Γ ⊆ 2U having the monotonicity property.

In multipartite access structures, the set of players U is

partitioned into m disjoint entities U1,U2, · · · ,Um called

levels and all players in each level play exactly the same role

inside the access structure.

In multi-secret sharing schemes the problem of sharing

many secrets is addressed. In these schemes, every participant

needs to keep only one shadow and many secrets can be

shared independently without refreshing the shadow. In order

to reconstruct a secret, each involved participant only needs

to submit a pseudo shadow computed from the real shadow

instead of the real shadow itself. The reconstruction of a secret

cannot compromise the secrecy of the remaining secrets that

haven’t been reconstructed. A typical scenario wherein the

multi-secret sharing problem occurs is as follows.

Suppose that a company has l secrets which are important

for business functionalities. Each secret contains a key

information needed to perform a business operation. The

company does not trust any single employee to access any one

of the secrets. The company decides that each secret be shared

among a set of employees/participants according to a specific

threshold access structure. The company may use multiple

secret sharing schemes to share these secrets. Howevereach

employee needs to keep multiple shadows to participate in

each game of secret sharing corresponding to each secret.

So, there will be a shadow/share management problem in

this method. Hence the need for multi-secret sharing schemes.
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A. Detection of cheaters

A verifiable secret-sharing scheme [13] provides its share-

holders with an ability to verify that (a) the secret shadows

obtained from the dealer are derived consistently from the

same secret and (b) the secret shadows obtained from the

other shareholder in the secret reconstruction process are

genuine shadows. This ability is important because a dishonest

dealer can cheat share holders by giving them fake shadows.

Also communication errors can result in fake shadows. A

shareholder may also cheat others in the secret reconstruction

process by presenting a fake shadow to prevent others from

obtaining the real secret. Secret sharing schemes involving

cheaters is discussed in [5] and Cheating detection and iden-

tification in CRT based schemes was presented by pasaila [7].

B. Related Work

Secret sharing scheme that uses Mignotte’s sequence and

is based on Chinese Remainder Theorem [8] is introduced in

[1], and it is modified to result in another scheme by Asmuth-

Bloom [2]. J. He, E. Dawson [9], proposed a multi-stage secret

sharing scheme based on one way function in 1994 [10], [11],

[12]. They used Lagrange interpolation polynomial in order

to perform secret sharing. Later in 2000, Chien et al. [15]

proposed a new type of (t, n) multi-secret sharing scheme

based on the systematic block codes. Subba Rao Y V and

Chakravarthy Bhagvati [14] came up with a multi-stage secret

sharing scheme based on CRT. In the later scheme multiple

secrets are shared to different groups, such that each group

receives a share of the secret intended for it.

C. Motivation

Mignotte’s and Asmuth-Bloom Secret Sharing Schemes are

based on CRT. They are designed to handle single secret

only and hence they are not capable of handling multiple

secrets. So, to share multiple secrets, one needs to initiate

multiple (one for each secret) secret sharing schemes. Also

the shares distributed in connection with (corresponding to)

one secret cannot be reused for a different secret. That is

shares need to be distributed whenever a new secret is to be

shared. This results in receiving a participant to keep multiple

shares corresponding to each secret. So, there will be a share

management problem. This paper addresses this aspect of the

secret sharing schemes and proposes several schemes that

overcome this issue.

The paper is organised as follows: The following sub-

sections gives an overview of Mignotte and Asmuth-Bloom

schemes. Section 2 gives an overview of the Mignotte’s and

Asmuth-Bloom Schemes. Section 3 and 4 propose Mignotte’s

sequence based reusable secret sharing schemes designed for

single and multiple secrets respectively. Section 5 improves

on the multi-secret Sharing Scheme given in Section 4 by

reducing the number of public values required. Sections 6

and 7 propose Asmuth-Bloom sequence based reusable secret

sharing schemes designed for single and multiple secrets re-

spectively. Our results are shown in section 8 and Concluding

remarks are in section 9.

II. EXISTING SCHEMES

A. Overview of Mignotte’s SSS

Mignotte’s sequence: Let t and n be two integers such

that n ≥ 2 and 2 ≤ t ≤ n. A (t, n) Mignotte’s sequence is

a sequence of pairwise co-prime positive integers p1 < p2 <
. . . < pn such that

t−2∏

i=0

pn−i <

t∏

i=1

pi

This can be seen to be equivalent to

max1≤i1<...<it−1≤n(pi1 ∗ pi2 ∗ . . . ∗ pit−1
) <

min1≤i1<...<it≤n(pi1 ∗ pi2 ∗ . . . ∗ pit)

To share a secret S among a group of n users, the dealer

does the following:

1) Distribution:

• The secret S is chosen as a random integer such that

β < S < α

where α =
t∏

i=1

pi and β =
t−2∏
i=0

pn−i.

• Compute shares Ii = S mod pi for all 1 ≤ i ≤ n.

• Distribute shares Ii, 1 ≤ i ≤ n, to n participants.

2) Reconstruction:

• Given t distinct shares Ii1Ii2 , . . . , Iit the secret S is

reconstructed using the standard variant of Chinese

Remainder Theorem, as the unique solution modulo

pi1 . . . pit of the system,

S ≡ Iij mod pij , 1 ≤ j ≤ t

B. Overview of Asmuth-Bloom SSS

A sequence of pairwise coprime positive integers (can also

be called as Asmuth-Bloom sequence) p0, p1 < · · · < pn is

chosen such that

p0

t−2∏

i=0

Pn−i <

t∏

i=1

Pi

To share a secret S among a group of n users, the dealer

does the following:

Distribution:

• The secret S is chosen as a random integer of the

set Zp0
.

• Compute shares Ii = X = (S + γp0) mod pi for

all 1 ≤ i ≤ n where γ is an arbitary integer such

that

p0

t−2∏

i=0

Pn−i < (S + γp0) <

t∏

i=1

Pi

.

• Distribute shares Ii, 1 ≤ i ≤ n, to participants.

Reconstruction:

• Given t distinct shares Ii1Ii2 , . . . , Iit the modified

secret X is reconstructed using the standard vari-

ant of Chinese Remainder Theorem, as the unique

solution modulo pi1 . . . pit of the system
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X ≡ Iij mod pij , 1 ≤ j ≤ t

• The original secret can be reconstructed using S =
X mod p0

C. Two-variable one-way function

A two-variable one-way function F (r, z) is a function that

maps a random value r and a share z onto a bit string F (r, z)
of a fixed length. This function has the following properties.

• Given r and z, it is easy to compute F (r, z);
• Given z and F (r, z), it is hard to compute r;

• Having no knowledge of z, it is hard to compute F (r, z)
for any r;

• Given z, it is hard to find two different values r1 and r2
such that F (r1, z) = F (r2, z);

• Given r and F (r, z), it is hard to compute z;

• Given pairs of ri and F (ri, z), it is hard to compute

F (r′, z) for r′ 6= ri.

III. REUSABLE SINGLE SECRET SCHEME BASED ON

MIGNOTTE’S SEQUENCE

In the previous schemes i.e Mignotte [1], Asmuth-Bloom

[2], the shares are directly related to the secret. That is a new

set of shares needs to be distributed whenever a new secret

is to be shared. So, we hereby propose a scheme [6] that

overcomes this limitation; thereby allowing the shares to be

reusable.

Overview of the scheme

Initially, the dealer comes up with the number of partici-

pants, (n), threshold value, (k), the secret (S) to be shared

among the participants P1, P2, · · · , Pn, one way function,

(f) and the Mignotte’s sequence p1, p2, · · · , pn to be used.

Also the delaer chooses random values yi, 1 ≤ i ≤ n, and

distributes them one each to the participants (i.e yi to Pi) as

the pseduo shares of the participants. The dealer then computes

the (real) shares (Zi) of the participants Pi, 1 ≤ i ≤ n,

from the secret. Now the dealer applies the chosen one-way

function f to each of these random numbers (yi), subtracts

each of these resulting numbers f(yi) from the corresponding

real shares Zi, 1 ≤ i ≤ n, of the participants. These values are

made public. While reconstructing the secret, the participants

first apply one-way function to the pseudo share, which they

possess, adds the resulting value f(yi) to the corresponding

public share and recovers the actual share Zi. These shares

are then used to recover the secret using CRT.

A. Distribution

• Dealer chooses a publicly known (k, n) Mignotte’s se-

quece p1, p2, . . . , pn
• Chooses randomly y1, y2, · · · , yn such that yi ∈ Zpi

as

the pseudo share of the ith participant.

• Chooses the secret S such that β < S < α, where α =
k∏

i=1

pi and β =
k−2∏
i=0

pn−i.

• Computes Zi = S mod pi, 1 ≤ i ≤ n.

• Computes di = (Zi − f(yi)) mod pi, 1 ≤ i ≤ n, as the

shift values, where f is the chosen one way function.

• For every i, 1 ≤ i ≤ n, deliver yi to the ith participant

through a secure channel and publish di

B. Reconstruction

• Each particiapnt calculates his actual share by computing

Zi = (di + f(yi)) mod pi.
• The secret is reconstructed from the shares Zi of k or

more participants using CRT.

C. Example:

1) Distribution:

• Consider a publicly known (3, 5) Mignotte’s sequece to

be 5,7,11,13,17.

• Let the random values be y1 = 3, y2 = 4, y3 = 8, y4 =
5, y5 = 10 and the chosen one-way function be the

exponentiation of 2 modulo 17.

• Consider the secret as 297 which lies between β and α,

where β = 221 and α = 385.

• Compute Zi = S mod pi, 1 ≤ i ≤ 5.

Z1 = 297 mod 5 = 2, Z2 = 297 mod 7 = 3,

Z3 = 297 mod 11 = 0, Z4 = 297 mod 13 = 11,

Z5 = 297 mod 17 = 8.

• Compute shift values di = Zi−f(yi) mod pi,1 ≤ i ≤ 5.
d1 = (2 − 8) mod 5 = 4, d2 = (3 − 16) mod 7 = 1,

d3 = (0− 1) mod 11 = 10, d4 = (11− 15) mod 13 = 9,

d5 = (8− 4) mod 17 = 4.

These values are made public and yi, 1 ≤ i ≤ 5, are

privately delivered to the participants.

2) Reconstruction:

• Three particiapnts, say Z1, Z2, Z5, want to pool their

shares and reconstruct the secret. So they calculate their

actual shares by computing Zi = (di + f(yi)) mod pi
for i = 1, 2 and 5. That is

Z1 = (4 + 8) mod 5 = 2, Z2 = (1 + 16) mod 7 = 3,

and Z5 = (4 + 4) mod 17 = 8.

• The secret is reconstructed from the following equations

using CRT.

S ≡ 2 mod 5
S ≡ 3 mod 7
S ≡ 8 mod 17

We have M = 5 ∗ 7 ∗ 17 = 595, m1 = M
5

= 119,m2 =
M
7

= 85,m3 = M
17

= 35 and N1 = 4, N2 = 1, N3 = 1
where Ni, 1 ≤ i ≤ 3 are such m1N1 = 1 mod
5,m2N2 = 1 mod 7,m3N3 = 1 mod 17
Therefore, S = ((2∗119∗4)+(3∗85∗1)+(8∗35∗1)) mod
595 = 297
Hence the secret.

IV. PROPOSED MULTI-STAGE MULTI-SECRET SHARING

SCHEME BASED ON MIGNOTTE’S SEQUENCE

Overview of the scheme

As in the previous single secret scheme, here also the dealer

initializes all the required parameters. The only difference is
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that the dealer chooses multiple, say l, secrets Si, 1 ≤ i ≤ l,
instaead of a single secret. The chosen secrets Si, 1 ≤ i ≤ l,
are then modified to S′

i = Si+Si+1, 1 ≤ i ≤ l−1, except the

last secret Sl, which remains as it is. Successful reconstruction

of the secrets is possible only when the secrets lie between

the values of β and α. So as to bring the modified secrets (i.e

S′
i = Si+Si+1) to this range , we divide each of the modified

secret by 2. While doing so, we modify the secrets S′
i by

subtracting 1 from the odd secrets and record this by setting a

flag bit bi. The resulting values are the final modified secrets

(S′′
i ), from which the actual shares (Zij) of the participants are

generated. From the actual shares Zij , 1 ≤ i ≤ l, 1 ≤ j ≤ n,

and the pseudo shares y1, y2, · · · , yn public values dij are

computed. Verification values are also derived from the actual

shares. Both the sets, i.e the set of the public (di values) and

the the set of verification values are made public. The random

values (i.e pseudo shares y1, y2, · · · , yn) which were chosen

by the dealer are distributed privately to each participant. In

the verification phase, any participant can compute the hash

value by using verification function and check whether they

are equal to the published verification values.

In the reconstruction phase, participants compute their ac-

tual shares by adding the images of the one-way function of

their secret shadows to the public values. CRT is used to

reconstruct the modified secrets, which are then multiplied

by 2. Si−1 is then recovered by subtracting the previously

recostructed secret Si.

A. Initialization

In this phase, all the variables are intialized and the secrets

are chosen.

Algorithm 1 Initialization

1: Let {P1, P2, · · · , Pn} be the n paricipants and k be the

threshold value.

2: Consider a publicly known (k, n) Mignotte’s sequece, say

p1 < p2 < . . . < pn.

3: Randomly choose n secret shadows y1, y2, · · · , yn such

that yi ∈ Zpi
as the pseudo shares.

4: Choose the secrets S1, S2, · · · , Sl such that β < Si < α,

1 ≤ i ≤ l , where α =
k∏

i=1

Pi and β =
k−2∏
i=0

Pn−i.

B. Distribution

In the distribution phase, actual secret is modified except

the lth secret. Shares are computed from these modified

secrets.

Algorithm 2 Distribution of Shares

1: Compute S′
i = Si + Si+1, for i = 1, 2, · · · , l − 1

2: For i = 1, 2, · · · , l − 1
Begin

3: If (S′
i mod 2 == 1) then S′′

i = (S′
i − 1)/2 and set

bi = 1
4: Else S′′

i = S′
i/2 and set bi = 0.

End.

5: S′′
l = S′

l = Sl

For i = 1, 2, · · · , l and j = 1, 2, · · · , n do

Begin

6: Compute Zij = S′′
i mod pj

7: Compute dij = (Zij − f i(yj)) mod pj , where f is a one

way function and f i(x) denotes i successive applications

of f to x. i.e f0(x) = x and f i(x) = f(f i−1(x)) for

i ≥ 1
8: Compute F (r, Zij), where r is a random value

End.

9: Distribute yj to each participant through a secure channel

and publish all dij , F (r, Zij) values, r and two-variable

one-way function F (r, z).

C. Verification

In this phase, each participant can verify the allocated

share. Reconstructor also can verify the shares provided by

the participants.

Algorithm 3 Verification of shares

1: Participants can verify their shares by calculating

F (r, Zij), where Zij itself can be computed by using

pseudo shares yj and the corresponding public values dij .

2: Similarly, reconstructor also can verify honesty of the

other participants by computing F (r, Zij).

D. Reconstruction

Secrets are reconstructed in seqiential order starting from

the last, i.e, the lth, secret. Any k or more participants can

pool their shares and reconstruct these secrets.

Algorithm 4 Reconstruction of secrets

1: Each participant j, 1 ≤ j ≤ n, willing to take part in the

reconstruction calculates Zij = (dij+f i(yj)) mod pj ,1 ≤
i ≤ l

2: Any k participants can pool their shares and reconstruct

the secrets Sl, Sl−1, · · · , S1 in a sequential order as fol-

lows

3: If i = l, then construct S′′
l = S′

l and hence the secret Sl

using CRT from the shares Zlj

For i = l− 1, l − 2, · · · , 1 do the following:

4: Construct S′′
i using CRT from the shares Zij

5: S′
i = S′′

i ∗ 2
6: If bi = 1, S′

i = S′
i + 1

7: Compute the ith secret as Si = S′
i − Si+1
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E. Example

We hereby illustrate the proposed scheme with artificially

small parameters.

1) Initialization:

• Consider a group of 5 participants {P1, P2, P3, P4, P5}
wherein 3 participants are sufficient to reconstruct the

secret. That is the number of participants, n, is 5 and the

threshold, t, is 3.

• Consider the Mignotte’s sequece as 5,7,11,13,17 in which

β = 221 and α = 385.

• Let the random values be: y1 = 3, y2 = 4, y3 = 8, y4 =
5, y5 = 10.

• Consider the secrets to be S1 = 251, S2 = 282, S3 =
323, S4 = 317 which lie between β and α.

Let the chosen one way function be exponentiation of 2
modulo

2) Distribution:

• Compute S′
i = Si + Si+1 for i = 1, 2, 3. That is

S′
1 = S1 + S2 = 251 + 282 = 533

S′
2 = S2 + S3 = 282 + 323 = 605

S′
3 = S3 + S4 = 323 + 317 = 640

S′
4 = S4 = 317.

• Check the condition (S′
i mod 2 == 1) and correspond-

ingly compute S′′
i ,

S′′
1 = (533− 1)/2 = 266 and b1 = 1

S′′
2 = (605− 1)/2 = 302 and b2 = 1

S′′
3 = 640/2 = 320 and b3 = 0

S′′
4 = S′

4 = 317.
• Compute Zij = S′′

i mod pj ,for i = 1, 2, 3, 4 and

j = 1, 2, 3, 4, 5. This gives

Z11 = 1, Z12 = 0, Z13 = 2, Z14 = 6, Z15 = 11
Z21 = 2, Z22 = 1, Z23 = 5, Z24 = 3, Z25 = 13
Z31 = 0, Z32 = 5, Z33 = 1, Z34 = 8, Z35 = 14
Z41 = 2, Z42 = 2, Z43 = 9, Z44 = 5, Z45 = 11

• Compute public values dij = (Zij−f i(yj)) mod pj, 1 ≤
i ≤ 4, 1 ≤ j ≤ 5
d11 = 3, d12 = 5, d13 = 1, d14 = 4, d15 = 7
d21 = 1, d22 = 0, d23 = 3, d24 = 7, d25 = 14
d31 = 3, d32 = 3, d33 = 8, d34 = 6, d35 = 13
d41 = 3, d42 = 5, d43 = 4, d44 = 1, d45 = 9

• yj , 1 ≤ j ≤ 5 values are delivered to each participant

through a secure channel and dij , 1 ≤ i ≤ 4, 1 ≤ j ≤ 5
values are published.

3) Reconstruction: Since the threshold is 3, let us assume

that the participants P1, P2 and P5 cooperate in the reconstruc-

tion procedure. So, they perform the following operations to

reconstruct the secret.

• Each particiapnt calculates his actual share for

secret Si i.e., the jth participant calculates

Zij = (dij + f i(yj)) mod pj . Also they know from the

public values that b1, b2 and b3 are 1,2, and 0 respectively.

• Construct the secret S4 by pooling shares Z41, Z42, Z45

and using CRT as follows:

We have M = 5 ∗ 7 ∗ 17 = 595, m1 = 119,m2 =

85,m3 = 35 and N1 = 4, N2 = 1, N3 = 1

Therefore, S4 = ((2 ∗ 119 ∗ 4) + (2 ∗ 85 ∗ 1) +
(11 ∗ 35 ∗ 1)) mod 595 = 317.

• Computing S′′
3 , S

′′
2 , S

′′
1 by pooling shares

(Z31, Z32, Z35), (Z21, Z22, Z25), (Z11, Z12, Z15)
respctively, we have,

S′′
3 = ((0∗119∗4)+(5∗85∗1)+(14∗35∗1)) mod 595 =

320;

S′′
2 = ((2∗119∗4)+(1∗85∗1)+(13∗35∗1)) mod 595 =

302; and

S′′
1 = ((1∗119∗4)+(0∗85∗1)+(11∗35∗1)) mod 595 =

266

• Since b3 = 0, we have S′
3 = S′′

3 ∗ 2 = 640.

Similarly b2 = 1 implies that S′
2 = (S′′

2 ∗ 2) + 1 = 605
and b1 = 1 implies that S′

1 = (S′′
1 ∗ 2) + 1 = 533.

• Construct secrets S3, S2, S1 sequentially by evaluating

the expression Si = S′
i − Si+1 as follows:

S3 = S′
3 − S4 = 640− 317 = 323

S2 = S′
2 − S3 = 605− 323 = 282

S1 = S′
1 − S2 = 533− 282 = 251

Hence the required secrets.

F. Correctness

In the following correctneess of the proposed multi-stage

multi-secret scheme is discussed.

Theorem The secrets can be reconstructed if and only if the

set of participants reconstructing the secrets is an authorized

set.

Proof

• Case 1: Sl reconstruction

As explained in the reconstruction, each participant Pj ,

1 ≤ j ≤ n can compute the actual share Zlj correspond-

ing to the secret Sl = S′
l = S′′

l from dlj . Note that S′′
l is

such that β < S′′
l < α. This is because S′′

l = S′
l = Sl and

β < Sl < α. Since α =
∏k

i=1
Pi and β =

∏k−2

i=0
Pn−i,

from the principle of CRT, any k or more participants

will be able to reconstruct S′′
l = Sl where as any set of

atmost (k−1) participants will not be able to reconstruct

the same.

• Case 2: Reconstruction of remaining secrets

Following the same procedure explained in case 1, one

can reconstruct S′′
l−1

and hence S′
l−1

= 2S′′
l−1

+ bl−1

from which Sl−1 = S′
l−1−Sl can be computed. Similarly

the other secrets can be recovered. Note that all this is

possible by an authorized set and not by an unauthorized

set. This is because the product of any k−1 primes is less

than or equal to β; whereas the secrets Si, 1 ≤ i ≤ l− 1
and hence S′′

i lie in the interval (β, α).

V. IMPROVED MULTI-STAGE MULTI-SECRET SHARING

SCHEME BASED ON MIGNOTTE’S SEQUENCE

Note that the previous scheme uses flag bits, which are made

public, to keep track of whether the modified secrets are even
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or odd. This increases the number of public values by l − 1,

where l is the number of secrets. But the number of public

values is one of the parameters that determine the goodness

of a scheme; that is, lesser the number of public values of a

scheme better it is. Motivated by this observation, we hereby

propose an improved scheme for multi-secrets. Overview and

correctness of this scheme is similar to the previous one.

A. Distribution Phase

Algorithm 5 Distribution of Shares

1: For i = 1, 2, · · · , l and j = 1, 2, · · · , n do the following:

(i) Calculate Zij = Si mod pj .

2: For i = l and j = 1, 2, · · · , n do the following:

(i) Compute dlj = (Zlj − f l(yj)) mod pj
3: For i = 1, 2, · · · , l − 1 and j = 1, 2, · · · , n do the

following:

(i) Compute dij = Zij ⊕ f i(yj) ⊕ (Si+1 mod pj). That

is convert Zij , f
i(yj) and (Si+1 mod pj) to binary, exor

these binary values, and assign the resulting value to dij .

4: Compute F (r, Zij), where r is a random value

5: Distribute yj to each participant through a secure channel

and publish all dij , F (r, Zij) values, r and two-variable

one-way function F (r, z).

B. Reconstruction

Secrets are reconstructed in sequential order starting from

the lth, secret. Any k participants can pool their shares and

reconstruct these secrets.

Algorithm 6 Reconstruction of secrets

1: For i = l and j = 1, 2, · · · , n do the following

2: calculate Zlj = (dlj + f l(yj)) mod pj .

3: For i = l − 1, l − 2, · · · , 1 and j = 1, 2, · · · , n do the

following :

4: calculate Zij = (dij ⊕ f i(yj)⊕ (Si+1 mod pj)) .

5: Any k participants can pool their shares and reconstruct

the secrets Sl, Sl−1, · · · , S1 in a sequential order using

CRT from the shares Zij .

Note:Verification is same as in the previous schemes.

C. Example

Let the values of the parameters be as in the example of the

previous section.

1) Distribution: Only those steps that differ from the pre-

vious one are given. The difference is only in the calculation

of the true and public values of the secrets.

• Compute Zij = Si mod Pj for i = 1, 2, 3, 4 and

j = 1, 2, · · · , 5. This gives

Z11 = 1, Z12 = 6, Z13 = 9, Z14 = 4, Z15 = 13
Z21 = 2, Z22 = 2, Z23 = 7, Z24 = 9, Z25 = 10
Z31 = 3, Z32 = 1, Z33 = 4, Z34 = 11, Z35 = 0
Z41 = 2, Z42 = 2, Z43 = 9, Z44 = 5, Z45 = 11

• Compute public values dij = (Zij ⊕ f i(yj) ⊕ (Si+1

mod Pj)), 1 ≤ i ≤ 3, 1 ≤ j ≤ 5
d11 = 11, d12 = 20, d13 = 15, d14 = 2, d15 = 3
d21 = 0, d22 = 2, d23 = 1, d24 = 11, d25 = 25
d31 = 3, d32 = 1, d33 = 9, d34 = 12, d35 = 10

• Calculate d4j = (Z4j − f4(yj)) mod pj , 1 ≤ j ≤ 5
d41 = 3, d42 = 5, d43 = 4, d44 = 1, d45 = 9

• yj , 1 ≤ j ≤ 5 are given to each participant through a

secure channel and dij , 1 ≤ i ≤ 4, 1 ≤ j ≤ 5 values are

published.

2) Reconstruction: Assume that the participants P1, P2 and

P5 cooperate to reconstruct the secrets.

• Compute Z4j = (d4j + f4(yj)) mod pj for j = 1, 2,

and 5

• Construct the secret S4 as 317 by pooling shares Z41 =
2, Z42 = 2, Z45 = 11 and using CRT
Compute Zij = (dij ⊕ f i(yj) ⊕ (Si+1modpj)) for i =
3, 2, 1 and j = 1, 2, · · · , 5
Compute S3 as 323, S2 as 282, S1 as 251 by pooling

shares (Z31, Z32, Z35), (Z21, Z22, Z25), (Z11, Z12, Z15)
respectively.

D. Comparison

The comparison between the previous Multi-Stage Secret

sharing scheme and Improved Scheme is shown below.

VI. PROPOSED SINGLE SECRET SHARING SCHEME BASED

ON ASMUTH-BLOOM SEQUENCE

Overview of the scheme

Initially, the dealer comes up with the number of participants

(n), threshold value (k), the secret (S) to be shared among

the participants P1, P2, · · · , Pn, one way function (f), value

γ and Asmuth-Bloom sequence p0, p1, p2, · · · , pn to be used.

Also the delaer chooses random values yi, 1 ≤ i ≤ n, and

distributes them one each to the participants (i.e yi to Pi) as

the pseduo shares of the participants. The dealer modifies the

secret to X = S + γp0 and then computes the (real) shares

of the participants Pi, 1 ≤ i ≤ n, from X . Now the dealer

applies the chosen one-way function f to each of these random

numbers (yi), subtracts each of these resulting numbers f(yi)
from the corresponding real shares Zi, 1 ≤ i ≤ n of the

participants and distribute the chosen random numbers yi
to the participants Pi. While reconstructing the secret, the

participants first apply one-way function to the pseudo share,

which they possess, adds the resulting value f(yi) to the

corresponding public share and recovers the actual shares, Zi.

These shares are then used to recover X using CRT, from

which the actual secret S is reconstructed.

A. Distribution

• Let the chosen (k, n) Asmuth-Bloom sequence be

p0, p1, p2, . . . , pn.
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TABLE I
COMPARISON

S.No Property Previous Scheme Improved Scheme

1 No. of Public values ln+ (l − 1) (ln)
2 Information Leak Leak information to intruders No information is leaked

3 Computionally Security Less secure More secure

• Choose y1, y2, · · · , yn such that yi ∈ Zpi
as the pseudo

shares.

• Choose the secret S such that S ∈ Zp0

• Modify secret S to X = (S + γp0), where γ is an

arbitary integer such that β < (S + γp0) < α where

β = p0
k−2∏
i=0

Pn−i and α =
k∏

i=1

Pi.

• Compute shares Zi = X mod pi, 1 ≤ i ≤ n.

• Compute di = (Zi − f(yi)) mod pi as the shift values,

where f is the chosen one way function.

• For every i, 1 ≤ i ≤ n, deliver yi to the ith participant

through a secure channel and publish di

B. Reconstruction

• Each participant calculates his actual share by computing

Zi = (di + f(yi)) mod pi.
• The modified secret X is reconstructed from the shares

Zi of k participants using CRT.

• The original secret S is then reconstructed using S =
X mod p0

C. Example:

The proposed scheme is hereby illustrated with artificially

small parameters.
1) Distribution:

• Consider a publicly known (3, 4) Asmuth-Bloom

sequence. Let it be 3,11,13,17,19.

• Let the random values be: y1 = 3, y2 = 4, y3 = 8, y4 = 5
and the chosen one-way function be the exponentiation

of 2 modulo 17.

• Consider the secret as 2, as 2 ∈ Zp0

• We need to consider γ such that β < (S + γp0) < α

where β = p0
k−2∏
i=0

Pn−i and α =
k∏

i=1

Pi. So choose

γ = 431 which gives X = (2 + 431 ∗ 3) = 1295

• Computing Zi = X mod pi.
Zi1 = 1295 mod 11 = 8, Zi2 = 1295 mod 13 = 8,

Zi3 = 1295 mod 17 = 3, Zi4 = 1295 mod 19 = 3

• Computing shift values by di = [Zi − f(yi)] mod pi.
d1 = (8 − 8) mod 11 = 0, d2 = (8 − 16) mod 13 = 5,

d3 = (3 − 1) mod 17 = 2, d4 = (3− 15) mod 19 = 7.

These values are made public and yi,i = 1, 2, · · · , n are

privately delivered to the participants.

2) Reconstruction:

• Any participant, say Z1, Z2, Z3 wants to pool their shares

and reconstruct the secret.

Hence they calculate their actual shares by Zi = (di +
f(yi)) mod pi.
Z1 = (0 + 8) mod 11 = 8,

Z2 = (5 + 16) mod 13 = 8, and

Z3 = (2 + 1) mod 17 = 3.

• The secret is reconstructed from the following equations

using CRT.

S ≡ 1 mod 11,

S ≡ 12 mod 13,

S ≡ 2 mod 17

We have M = 11∗13∗17 = 2431, M1 = 2431/11 = 221,

M2 = 187, M3 = 143
and N1 = 1,N2 = 8,N3 = 5
Therefore, X = [(8 ∗ 221 ∗ 1)+ (8 ∗ 187 ∗ 8)+ (3 ∗ 143 ∗
5)] mod 2431 = 1295
and the secret S = 1295 mod 3 = 2,

Hence the secret.

VII. PROPOSED MULTI-STAGE MULTI-SECRET SHARING

SCHEME BASED ON ASMUTH-BLOOM SEQUENCE

Overview of the scheme

The dealer initializes all the parameters and chooses the

required multiple secrets Si, 1 ≤ i ≤ l, as against the

single secret of the previous scheme. In the distribution

phase, the chosen secrets except the last are modified to S′
i

by adding two consecutive secrets, i.e. S′
i = Si + Si+1.

Successful reconstruction of the secrets is possible only when

(Si + γp0) lies between p0
t−2∏
i=0

Pn−i and
t∏

i=1

Pi. So as to

bring the modified secrets (i.e S′
i = Si + Si+1) to this

range, we divide the modified secrets by 2. The resulting

values are the new modified secrets (S′′
i ). Again from these

modified secrets X values are computed, from which the actual

shares (Zij) of the participants are generated. From the actual

shares Zij , 1 ≤ i ≤ l, 1 ≤ j ≤ n, and the pseudo shares

y1, y2, · · · , yn public values are computed. Verification values

are also derived from the actual shares. Both the sets, i.e the set

of the public and the the set of the verification values are made

public. The random values (i.e. pseudo shares y1, y2, · · · , yn)

which were chosen by the dealer are distributed privately to

each participant. In the verification phase, any participant can

compute the hash value by using the verification function and

check whether they are equal to the published verification

values or not.

In the reconstruction phase, participants can compute their

actual shares by adding the images of the one-way function
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of their secret shadows to the public values. CRT is used to

reconstruct the X values, from which modified secrets are

computed and if the flag bit corresponding to the modified

secret is 1, then the modified secret is multiplied by 2 and 1

is added to it. Otherwise the modified secret is just multiplied

by 2. The actual secrets are then computed from these modified

secrets.

A. Initialization

In this phase, all the variables are intialized and the secrets

are chosen.

Algorithm 7 Initialization

1: Let {P1, P2, · · · , Pn} be the n participants and k be the

threshold value.

2: Consider a publicly known (k, n) Asmuth-Bloom se-

quence, say p0, p1, p2, . . . , pn.

3: Randomly choose n secret shadows y1, y2, · · · , yn such

that yi ∈ Zpi
as the pseudo shares.

4: Choose the secrets S1, S2, · · · , Sl such that Si ∈ Zp0
,

1 ≤ i ≤ l.

B. Distribution

In the distribution phase, actual secrets are modified except

the last. Shares are computed from these modified secrets.

Algorithm 8 Distribution of Shares

1: Compute S′
i = Si + Si+1, for i = 1, 2, · · · , l− 1

2: If (S′
i mod 2 == 1) then, S′′

i = (S′
i − 1)/2 and bi = 1,

for 1 ≤ i ≤ l − 1
Otherwise, S′′

i = S′
i/2 and bi = 0, for 1 ≤ i ≤ l − 1

3: S′′
l = S′

l = Sl

4: Xi = (S′′
i +γp0), where γ is an arbitary integer such that

(Si + γp0) lies between p0
t−2∏
i=0

Pn−i and
t∏

i=1

Pi.

5: For i = 1, 2, · · · , l and j = 1, 2, · · · , n do

Begin

6: Compute Zij = Xi mod pj
7: Compute dij = (Zij − f i(yj)) mod pj , where f is a one

way function and f i(x) denotes i successive applications

of f to x.

8: Compute F (r, Zij), where r is a random value

End

9: Distribute yj to each participant through a secure channel

and publish all dij , F (r, Zij) values, r and two-variable

one-way function F (r, z).

C. Verification

In this phase, each participant can verify the allocated

shares. Reconstructor also can verify the shares provided by

the participants.

Algorithm 9 Verification of shares

1: Participants can verify their shares by calculating

F (r, Zij), where Zij itself can be computed by using

pseudo shares and the corresponding public values.

2: Similarly, reconstructor also can verify honesty of the

other participants by computing F (r, Zij).

D. Reconstruction

Secrets are reconstructed in sequential order starting from

the last, i.e the lth secret. Any k participants can pool their

shares and reconstruct these secrets.

Algorithm 10 Reconstruction of secrets

1: Each participant j, 1 ≤ j ≤ n, willing to take part in the

reconstruction, calculates Zij = (dij + f i(yj)) mod pj ,

1 ≤ i ≤ l
Case 1: If i = l

2: Construct Xl value from corresponding shares Zlj using

CRT.

3: Compute Sl = S′
l = S′′

l = (Xl mod p0)
Case 2: For i = l − 1, l− 2, · · · , 1 do the following:

4: Construct Xi using CRT from the shares Zij

5: Construct S′′
i = Xi mod p0

6: S′
i = S′′

i ∗ 2
7: If bi = 1, S′

i = S′
i + 1

8: Compute the ith secret as Si = S′
i − Si+1

E. Example

We hereby illustrate the proposed scheme with artificially

small parameters.

1) Initialization:

• Consider a group of 5 participants {P1, P2, P3, P4, P5}
wherein 3 participants are sufficient to reconstruct the

secret. That is the number of participants, n, is 5 and the

threshold, k, is 3.

• Consider the Asmuth-Bloom sequence as

8,17,23,29,31,37 (where p0 = 8)

• Let the random values be: y1 = 6, y2 = 13, y3 = 24, y4 =
29, y5 = 35 and one-way function f(x) = 2x mod 43

• Consider the secrets to be S1 = 2, S2 = 3, S3 = 5, S4 =
7 which lie in Zp0

.

2) Distribution:

• Compute S′
i = Si + Si+1 for i = 1, 2, 3 so that we have

S′
1, S

′
2, S

′
3andS

′
4 as 5, 8, 12and7 respectively.

• Check the condition (S′
i mod 2 == 1) and correspond-

ingly compute S′′
i ,

S′′
1 = (5− 1)/2 = 2 and b1 = 1

S′′
2 = 8/2 = 4 and b2 = 0

S′′
3 = 12/2 = 6 and b3 = 0

S′′
4 = S′

4 = 7
• Compute Xi = (S′′

i + γp0), consider γ = 1200 as

(S′′
i + γp0) should lie between p0

t−2∏
i=0

Pn−i and
t∏

i=1

Pi.

Therefore, X1 = 9602, X2 = 9604, X3 = 9606, X4 =
9607
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TABLE II
COMPARISON OF EXISTING AND PROPOSED SCHEMES

S.No Scheme Multi-Secret Reusable No.of public values Sequence used

1 Mignotte Scheme(existing) Single No No pulic values Mignotte Sequence

2 Asmuth-Bloom Scheme(existing) Single No No pulic values Asmuth-Bloom Sequence

3 Reusable Single Secret Sharing Scheme I Single No No pulic values Mignotte Sequence

4 Proposed Multi-Stage Multi-Secret Sharing Scheme I Multi Yes ln+(l-1) Mignotte Sequence

5 Improved Multi-Stage Multi-Secret Sharing Scheme Multi Yes ln Mignotte Sequence

6 Reusable Single Secret Sharing Scheme II Single Yes No public values Asmuth-Bloom Sequence

7 Proposed Multi-Stage Multi-Secret Sharing Scheme II Multi Yes ln+(l-1) Asmuth-Bloom Sequence

• Compute Zij = Xi mod pj , for i = 1, 2, 3, 4 and

j = 1, 2, 3, 4, 5. This gives

Z11 = 14, Z12 = 11, Z13 = 3, Z14 = 23, Z15 = 19
Z21 = 16, Z22 = 13, Z23 = 5, Z24 = 25, Z25 = 21
Z31 = 1, Z32 = 15, Z33 = 7, Z34 = 27, Z35 = 23
Z41 = 2, Z42 = 16, Z43 = 8, Z44 = 28, Z45 = 24

• Compute public values dij = (Zij−F i(yj)) mod pj, 1 ≤
i ≤ 4, 1 ≤ j ≤ 5
d11 = 10, d12 = 12, d13 = 26, d14 = 21, d15 = 14
d21 = 8, d22 = 18, d23 = 21, d24 = 21, d25 = 20
d31 = 0, d32 = 16, d33 = 6, d34 = 11, d35 = 21
d41 = 0, d42 = 21, d43 = 6, d44 = 4, d45 = 20

• yj , 1 ≤ j ≤ 5 values are delivered to each participant

through a secure channel and dij , 1 ≤ i ≤ 4, 1 ≤ j ≤ 5
values are published.

3) Reconstruction: Since the threshold is 3, let us assume

that the participants P1, P2 and P5 cooperate in the reconstruc-

tion procedure. So, they perform the following operations to

reconstruct the secret.

• Each participant calculates his actual share

for secret Si i.e. the jth participant calculates

Zij = (dij + f i(yj)) mod pj . Also they know public

values b1, b2 and b3 i.e. 1,0 and 0 respectively.

• Construct the value X4 by pooling shares Z41, Z42, Z45

and using CRT as follows:

We have M = 17 ∗ 23 ∗ 37 = 14467,

m1 = M
17

= 851,m2 =
M
23

= 629,m3 =
M
37

= 391
and N1 = 1, N2 = 3, N3 = 30

Therefore, S4 = ((2 ∗ 851 ∗ 1) + (16 ∗ 629 ∗ 3) +
(24 ∗ 391 ∗ 30)) mod 14467 = 9607.

• Now calculate secret S4 as S4 = X4 mod p0 so that

S4 = 9607 mod 8 = 7, Hence the secret S4

• Compute X3, X2, X1 by pooling shares

(Z31, Z32, Z35), (Z21, Z22, Z25), (Z11, Z12, Z15)
respectively. Therefore,

X3 = ((1∗851∗1)+(15∗629∗3)+(29∗391∗30)) mod
14467 = 9606
X2 = ((16∗851∗1)+(13∗629∗3)+(21∗391∗30)) mod
14467 = 9604
X1 = ((14∗851∗1)+(11∗629∗3)+(19∗391∗30)) mod
14467 = 9602

• Compute S′′
3 , S

′′
2 , S

′′
1 Therefore,

S′′
3 = X3 mod p0 = 9606 mod 8 = 6

S′′
2 = X2 mod p0 = 9604 mod 8 = 4

S′′
1 = X1 mod p0 = 9602 mod 8 = 2

• Since b3 = 0, we have S′
3 = S′′

3 ∗ 2 = 12
and b2 = 0, we have S′

2 = (S′′
2 ∗ 2) = 8

also since b1 = 1, we have S′
1 = (S′′

1 ∗ 2) + 1 = 5

• Construct secrets S3, S2, S1 sequentially using the ex-

pression Si = S′
i − Si+1 and arrive at

S3 = S′
3 − S4 = 12− 7 = 5

S2 = S′
2 − S3 = 8− 5 = 3

S1 = S′
1 − S2 = 5− 3 = 2

Hence the required secrets.

F. Correctness

Correctness of the scheme is same as the one given in

section 4 except that X values replace S′′ values and that

Si = Xi mod p0 for 1 ≤ i ≤ l.

VIII. OUR RESULTS

Three Schemes that use the Mignotte’s Sequence and then

two Schemes that use the Asmuth-Bloom Sequence proposed

by this paper. The first and the fourth Schemes are designed

for single secret; whereas the remaining three Schemes are

designed for multiple secrets. Among the proposed Schemes,

third Scheme is an improvement over the Second one in the

sense that it reduces the number of required public values.

Also discussed in the paper is the correctness of the schemes.

Novelty of our schemes, in contrast to the existing schemes is

that the shares are reusable. Table II represents the comparative

analysis of existing schemes (Mignotte and Asmuth-Bloom)

and proposed schemes.

IX. CONCLUSIONS

In this paper, we have proposed three secret sharing schemes

that use the Mignotte’s sequence and two secret sharing

schemes that use the Asmuth-Bloom sequence. All these

five secret sharing schemes are based on Chinese Remainder

Theorem (CRT). The first scheme that uses the Mignotte’s

sequence is a single secret scheme. It is extended to the

multi-stage multi-secrets in the second scheme, which is later

improved to result in a third scheme. The first scheme that

uses the Asmuth-Bloom sequence is designed for the case of
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a single secret and the second one is an extension of the first

scheme to the case of multi-secrets. A novel feature of our

schemes is that the shares of the participants are reusable, i.e,

same shares can be used even with a new set of secrets. It also

checks the dealer participant’s honesty. This feature finds its

use if the dealer distributes fake shares to the participants or

a participant may provide a fake share to other participants in

reconstruction. Correctness of the scheme is also discussed.
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