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Abstract: This paper focuses in the selection of an optimal path 
pair for cooperative diversity based on cross-layer optimization in 
multihop wireless ad hoc networks. Cross-layer performance 
indicators, including power consumption, signal-to-noise ratio, 
and load variance are optimized using multi-objective 
optimization (MOO) with Pareto method. Consequently, 
optimization can be performed simultaneously to obtain a 
compromise among three resources over all possible path pairs. 
The Pareto method is further compared to the scalarization 
method in achieving fairness to each resource. We examine the 
statistics of power consumption, SNR, and load variance for both 
methods through simulations. In addition, the complexity of the 
optimization of both methods is evaluated based on the required 
computing time. 

Index terms: multi-objective optimization, Pareto method, 

scalarization method, selection of the path pair, multihop wireless 

ad hoc networks 

                                         I.  INTRODUCTION 

An ad hoc network is a collection of nodes that 

communicate dynamically without a fixed infrastructure. Each 

node can act as a source, relay, and destination. The nodes have 

limitations in terms of transmission range and battery capacity 

[1]. To overcome aforementioned limitations, it requires 

cooperative communication techniques. Cooperative 

communication is a system where the source nodes cooperate 

and coordinate with the nodes functioned as relay before 
reaching the destination node to improve transmission quality. 

Cooperative communication using a single antenna in 

multinode scenario can make beneficial use of antenna from 

each node so that it can create multiple antenna communication 

systems such as the multi input multi output (MIMO) [2]. 

Selection of nodes that will act as relays is a problem that 

must be solved by considering several criteria. In [1] and [3-6] 

relay selection is based only on the resources at the physical 

layer. Selection of relay that meets targets and constraints on 

multiple layers need to take into account the resources in the 

higher layers, so it is necessary to apply a cross-layer 
optimization [7-10]. If the optimization problem involves the 

compromise of more than one resource, where some of them  
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are contradictory, it is needed to apply MOO (multi-objective 

optimization) [11]. The application of MOO to optimize 

wireless networks in [11-13] is solved by scalarization. 
However, the problem of resources optimization can not be 

done separately because the problems are inter-related with 

each other. An alternative to overcome this weakness is the 

Pareto method. 

Runser et al [14] is one of the first to apply the Pareto 

method in solving MOO problems in wireless ad hoc 

networks. The result is a tradeoff characteristic of three 

parameters, namely robustness, energy consumption and delay 

for 2 hop ad hoc networks. Gunantara and Hendrantoro [15] 

further develop optimal relay selection for single multihop 

paths based on cross-layer optimization for power 
consumption, throughput, and load variance. In [15], the work 

deals with finding the optimum single path with multiple hops, 

whereas the problem at hand is on finding a pair of multihop 

paths that is optimum for cooperative diversity applications. 

This paper is motivated by those results, as well as to address 

the limitations of the study in [9] for wireless networks with 

relays where energy efficiency and load balance can not be 

achieved at the same time. 

To determine the performance of Pareto method, we 

compare it with the scalarization method. Scalarization 

method has been applied on the manipulator where each 

resource is normalized by the standard deviation method [16] 
and the priority method [17]. Normalization using standard 

deviation and priority method tends to separate prioritized 

objects and ignore other objects. In this study, each object is 

given equal weight and normalized by the square root of 

average power of the performance indicator quantity. 

Normalization is used to provide a sense of fairness among the 

objectives. 

The main contribution of this paper is, firstly, the 

optimization method for ad hoc network model that is 

dynamic that can be done simultaneously for all optimized 

resources based on path in order to obtain an optimal pair of 
paths with the help from MOO with Pareto method. Secondly, 

it describes scalarization method with fairness for all three 

resources. Thirdly, this paper describes the complexity of both 

methods of optimization and also to obtain cumulative value 

for all three resources.  

Section II of this paper gives a description of ad hoc 

networks, radio propagation, and MOO. Section III describes 

the model configuration, parameter simulation, and analysis of 

simulation results, with conclusions given in Part IV.
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                        II.  COOPERATIVE COMMUNICATIONS  

Cooperative communication can be explained by graph     
(   ) , where   {       }  is the set of nodes and   
{(   ) (   )   (     )}  is the set of links/hops. In 

multihop ad-hoc networks, there are pairs of source and 

destination node that communicate by involving other nodes 
as relays to form multihop paths. If the total number of nodes 

(including the source and destination pair) is N, then there is 

one single-hop solution, (   )  2-hop solutions,                   

(   )(   )  3-hop solutions, (   )(   )(   )     
4-hop solutions, and so on, for the source and destination 

pairs.  

In this study, the maximum number of hops to be 

considered for one path is limited to three. From the set of 

paths with three hops maximum, there are several possible 

combinations that form a pair of paths between the source and 

destination. Suppose  (   ) denotes the set of all path pairs 

having   and   hops,   
  states permutations of   out of  , and 

|•| specifies the number of path pairs in the set.  The number of 

combinations can be obtained such as | (   )|  = (   ) 
solutions consisting of two paths, each with one and two hops 

for each path,  | (   )|  = (   )(   )  solutions 
consisting of two paths, each with one and three hops, |R (2,2)| 

= (N-2) (N-3) solutions consisting of a pair of paths, each with 

two hops, | (   )| = (   )  
(   )  

 solutions consisting of 

two paths, each with two and three hops, and | (   )|  = 

(   )(   )  
(   )  

 solutions with a pair each having 

three hops. At the receiver, the signals received from the 

selected pair are combined with maximal ratio combining 

(MRC). 

Broadcast routing is assumed using amplify-and-forward 

(AF) relays, where the source sends the information to all 

nodes potential to be relays, so that information can arrive at 

the destination [18]. Broadcast routing is selected so that the 

transmitted data can be received by all adjacent nodes 

simultaneously to save transmission time. 
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Fig. 1. OFDMA Method for Path (1-2-3) and (4-5-6-7) 

 

  The protocol mechanism of the system model can be 

described as follows: 

-  The source can identify the destination position by each 

node detecting other nodes connected directly via a 

single hop and sending information to all nodes within 

one hop [19]. 

- To avoid interference and collisions among nodes, 

OFDMA (orthogonal frequency division multiple access) 

is used as in [20]. Each path uses a different sub-carrier, 
whereas each hop in a path uses a different time slot. Fig. 

1 illustrates an example of frequency/sub-carrier time 

slot division for two paths, namely path (1-2-3) 

consisting of two hops and path (4-5-6-7) that consists of 

three hops. 

                            III.  PROBLEM FORMULATION  

A.  Radio Propagation 

A.1 Outdoor 

It is assumed that the transmit power    for all nodes is 

identical and gain of the transmitter and receiver antenna,    
and    are the same. Therefore the received power    through a 

wireless hop of length   meters can be calculated by the 

following equation [15]: 

 

            (
 

  
)
 

       
  
   (1) 

 

where    denotes shadowing loss (dB) which is normally 

distributed with a standard deviation of  . 

A.2 Indoor 

In indoor condition, the nodes in an ad-hoc network are well 

positioned in rooms separated by walls. The walls can cause 

partial reflection of the transmitted signal so that only some 

portion of the energy is transmitted through the wall, which is 

represented by a transmission coefficient [21]. Power received 

at a node from another node in a different room via a link/hop 

can be determined using (1) by introducing the influence of the 

transmission coefficient:  

            (
 

  
)
 

       
  
   ∏ |  |

 

 

   

 

              
(2) 

 

where    and   respectively denotes the transmission 

coefficient of the m-th wall that is passed by the direct 

propagation path and the number of walls. 

B. Performance Indicators of Cooperative Communications  

To optimize the performance of cooperative 

communications, function or duty of each communication layer 

needs to be adapted by including the parameters and criteria on 

more than one layer of the architecture of the communication 

system. This is known as cross-layer optimization. The purpose 

of cross-layer optimization depends on the quantity of the layer 

to be made adaptive. In this paper, the layers of interest are the 

physical and the network layer. The following describes the 

parameters of these two layers. 

 
B.1  Power Consumption  

Power consumption on path is overall power requirements 

needed in transmitting data from the source to destination 

through multiple relays in each path. If it is assumed that all 
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nodes have the same transmission power   , then power 

consumption in the p-th path consisting of   hops are:  

 

          (3) 

 

While the amount of power consumption for path pair is 
obtained from the following equation: 

 
    (   )      ( )       ( ) (4) 

 

where     ( ) ,     ( )  and     (   )  denote the power 

consumption of the path with   hops, the path with   hops, and 

the pair of paths with   and   hops, respectively. The optimal 

path pair is thus the one with the smallest value of power 

consumption: 

 
             (    (   )     (   )     (   )   

                                   (   )     (   )) 
  (5) 

 

where          represents the power consumption of the optimal 

path pair. 

 
B.2  Signal-to-Noise Power Ratio 

SNR at each hop is the ratio between the received power 

with the noise power at the node,       ⁄ , where      
represents noise power assumed identical for all nodes. It is 

assumed that each relay does amplify and forward, so that the 

overall SNR on a path depends on the SNR of each hop [22]: 

 

  (∑  
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(6) 

 

with    is the value of SNR at the  -th hop. 

The SNR for a path pair after maximal-ratio combining is 

obtained from the following equation: 

 
  (   )     ( )     ( ) (7) 

 

where   ( ),  ( ), and   (   ) represent SNR of the path with   

hops, that of the path with    hops, and that of the maximal-

ratio combined paths with   and   hop. 

For an ad hoc network, the optimal pair of paths is the one 

giving the maximum value of SNR among all path pairs 

determined by the following equation: 

 
           (  (   )    (   )   (   )   

                               (   )   (   )) 
                                   

(8) 

 

with        denotes the SNR of the optimal path pair. 

 

B.3 Load Variance 

Load variance is the variance of traffic load over all nodes, 

which is inversely proportional to the load balance or fairness 

[23]. In wireless ad hoc networks, load balance is very 

important because some node may have greater opportunity to 

be chosen as a relay when energy consumption alone is 

considered, but might not be so when the traffic load it carries 
is taken into account. In a path pair, where node i is used as a 

relay, the load of node   becomes: 

 

           (9) 

 

with     and     respectively denoting its own traffic load and 

the incoming traffic load into node  .  
After the load of each node is known then the variance of 

traffic load of nodes in the whole network can be evaluated for 

each possible path pair with the following equation [23]: 
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Based on variances obtained for all possible path pairs, the 

optimal path pair in terms of load fairness can be determined 

by finding one with the lowest traffic load variance: 

 

           (   (   )   (   )   (   )   

                                    (   )   (   )) 
(11) 

 

where        denotes the load variance of the network with the 

optimal path pair and   (   ) denotes the load variance obtained 

for a path pair with   and   hop. 
 

IV.  MULTI-OBJECTIVE OPTIMIZATION 

Methods to solve MOO problems can be classified into two, 

Pareto and scalarization [24]. The following describes each of 

these methods. 

A. Pareto Method 

Optimization is the process of finding the best solution of a 
problem. For issues that contradict each other, such as the 

problems of smallest power consumption and the largest SNR, 

Pareto method can be used in searching the best solution. 

Mathematically, three issues in section III can be written as 

follows [25]: 

                    
             (    (   )       (   )) 

                          (  (   )    ,   (   ))            
                          (   (   )       (   ))              (12) 

                    subject to : 

                                       (   )     (   ) 
 

where   represents the number of cooperative paths and 

  (   )     (   )  indicates that the paths constituting a 

cooperative path pair cannot share any hop.  
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Pareto optimization method maintains the solutions of both 
problems in the Pareto Optimal Front (POF) apart during 

optimization. In POF, there is the dominance concept to 

distinguish the dominated (inferior) and the non-dominated 

solution  (non-inferior). For the optimization of two problems, 

non-dominated solution can be described on a POF plane (two 

dimensions), as illustrated in Fig. 2 for two problems Z1 and 

Z2 [26]. As for the optimization of three problems, non-

dominated solution can be described in POF surface (three 

dimensions)  [27].  
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Fig. 2. POF for Two Objectives 

 

In searching for the optimal value of a POF, the utopia 

point should be set first. For the case involving two objective 

functions that should be minimized and maximized, 

respectively, the utopia point is the intersection of the 

minimum value of the first objective function and the 

maximum value of the other. The optimal value can be 

determined by finding the shortest Euclidian distance [28] by 

equation [29]: 
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(13)         

 

where {  
    

 }  is the coordinate of the utopia point for 

variable Z1 that should be minimized and variable Z2 that 

should be maximized and {     } is the coordinate of the 

points on POF on the objectives plane. The normalizing value 

        is determined based on the mínimum value of   , 

while         is determined by the maximum value of   . In 
the simulation results reported in section V, this method is 

applied to three problems in (12). 

 

B. Scalarization Method 

In the scalarization method, all objectives are organized into 
a scalar by giving weight to each of them. Objective functions 

that should be minimized are marked negative, while those 

that should be maximized are marked positive. To gain a sense 

of fairness all objectives are given equal weight and are each 
normalized by its square root of average power (SRAP). For 

example, SNR is normalized by the SRAP of SNR, which 

simply can be seen in the denominator of equation (14), 

namely √ (  ). 
Scalarization of the three objectives becomes: 

 

  
       

√ (    
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√ (  
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√ (  
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(14) 

where   denotes the fitness function,     ,   , and    denote 

the 1st, 2nd and 3rd objective function, respectively, and   , 

  ,    denote the corresponding weights.     ,   , and    are 

respectively calculated by equation (4), (7), and (10). Weights 

         are determined randomly, selected, and changed 

gradually and periodically [30]. In our study,   ,   , and    
are all set equally to 1/3. 

Due to the large number of searches over existing 

cooperative path pairs, optimization methods such as genetic 

algorithm (GA) can be applied to determine the optimal value. 

  

V.   NUMERICAL RESULTS 

A.  Model Configuration 

We review ad-hoc networks in two conditions, i.e. outdoor 
and indoor. Results discussed in this and the next part are taken 
from one out of 500 configurations generated with randomly 
positioned nodes in our simulations. The exemplary 
configuration can be seen in Figs. 3 and 4. For outdoor 
condition, all the nodes are in an open space with an area of  40 
m × 40 m.  As for indoor condition, the building area of 40 m × 
40 m is divided into 16 rooms bounded by walls. In both 
configurations there are 32 nodes with random positions. Node 
1 acts as a source, whereas node 32 as destination, and the 
other nodes might act as relays if considered necessary. 
Simulation parameters are taken based on the application of 
WLAN in ad-hoc wireless networks as shown in Table I.  

 

Fig. 3. Outdoor Configuration 

 

To calculate the load variance of a path, it is assumed that 

aside from node 1 acting as the source that send data to a 
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destination, there are five other nodes that transmit data 
simultaneously to their respective destination nodes. As a 

result, there might be some nodes with better chance to 

become a relay due to their relatively low traffic loads. In this 

example, these five node pairs are using path 4-12-29-32, 7-

11-19-25, 10-19-22-23, 16-12-14-2, and 25-20-12-6. It is 

assumed that the sources, i.e., nodes 4, 7, 10, 16 and 25, each 

send data at a rate of 5 Mbps, 3 Mbps, 8 Mbps, 7 Mbps, 2 

Mbps, and 11 Mbps, respectively. Whereas other nodes are 

each assumed to have a random load of 2 Mbps, 7 Mbps, 12 

Mbps, or 17 Mbps. 

 

Fig. 4. Indoor Configuration 

 

TABLE I 
PARAMETERS OF SIMULATION 

 

Parameter : Value 

Outdoor path loss exponent ,    
: 4 

Indoor path loss exponent,    
: 2 

Standard deviation of shadowing,   : 8 dB 

Wall transmission coefficient,   : 0.3 

Power Transmit,    : 1 W 

Transmit antenna gain,    : 2 dB 

Receive antenna gain,    : 2 dB 

Frequency,   : 2.5 GHz 

Bandwidth,   : 20 MHz 

Noise,     : - 101 dBm 

 

B. Optimization Results  

In determining the results of this optimization we perform 

simulations 500 times. This section describes one of the 

simulation results. Optimization by Pareto method for all three 

performance indicators in outdoor configuration results in 

cooperative path pair    (1-32) and    (1-11-20-32) having 

the smallest Euclidean distance of 0.6499. Performance 
components produced in the process are power consumption 

of 3 W, SNR of 43.21 dB, and load variance of 56.91 Mbps2. 

As for the indoor configuration, cooperative path pair    (1-

14-32) and    (1-18-28-32) are obtained with the smallest 

Euclidean distance of 0.5467. The values achieved of 

performance components are power consumption of 4 W, 

SNR of 45.3 dB, and load variance of 48.91 Mbps2.  

In our reviewed example, optimization with scalarization 

for all three performance indicators outdoors produces fitness 

value of 2.4858. The selected cooperative path consists of    

(1-3-22-32) and    (1-4-14-32). As for indoor configuration, 

the cooperative path pair are found to be    (1-26-6-32) and 

  (1-10-14-32) with the fitness value of -9.0105. 

The result of the entire 500 times simulation is shown in 

Figs. 5 through 10. Beside the comparison between Pareto and 

scalarization method, we also compare the results for outdoor 

and indoor configurations. 

 
 

Fig. 5. PDF of Power Consumption Outdoor 

 

 
 

Fig. 6. PDF of Power Consumption Indoor 
 

Fig. 5 shows the PDF (probability density function) of 

power consumption for outdoor configuration. From Fig. 5 it 

can be seen that the largest value of power consumption with 

Pareto method in outdoor configuration is 3 W while the result 

from scalarization method varies between 3 W, 4 W, and 5 W. 
On the other hand, Fig. 6 shows that the power consumption in 

indoor configurations based on the Pareto method varies 

between 3 W and 4 W, while the scalarization results in an 

accumulation at 5 W. 
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From Figs. 5 and 6, it is known that Pareto method for the 
outdoor configuration results in selected cooperative path pair 

consisting of one and two hops, while for the indoor 

configuration the selected pair may consist of paths having 

one to three hops. This is because the received power at nodes 

obstructed by walls for indoor configuration is under the 

threshold power so that more hops are required in selection of 

cooperative path pair. A similar story also happens with the 

scalarization case, that is, the number of hops constituting the 

selected cooperative path pair is greater for the indoor than 

that for the outdoor configuration. Consequently, cooperative 

diversity in the indoor scenario tends to consume more energy 
than in the outdoor, which can be expected due to the presence 

of walls separating rooms inside the building. 

The CDF (cumulative distribution function) of SNR in 

outdoor configuration for both methods can be seen in Fig. 7. 

It shows that optimization by Pareto method produces values 

of SNR slightly greater than those obtained by scalarization 

method. However, both methods have the same range of SNR, 

that is, 40.5 - 51 dB. The SNR median difference between 

Pareto and scalarization method for the outdoor configurations 

is approximately 0.5 dB. 

 
 

Fig. 7. CDF of SNR Outdoor 

 
 

Fig. 8. CDF of SNR Indoor 

Fig. 8 shows the CDF of SNR for indoor configurations and 

demonstrates that by using Pareto method the achieved SNR 

values are greater compared to those from the scalarization 
method. The range of SNR for the Pareto method is between 

45 - 51.5 dB, while for the scalarization method, SNR value is 

in the 39 - 51.5 dB range. In this case, the median difference 

of SNR between the two methods is roughly 2 dB. Comparing 

the median differences from the outdoor and indoor 

configurations, it can be observed that the indoor case benefits 

more than the outdoor case does from the use of Pareto 

method over the scalarization. 

Fig. 9 shows the CDFs of load variance for outdoor 

configuration. The values of load variance resulting from the 

use of Pareto method is found to be smaller than those 
produced by the scalarization method. For the Pareto method 

the load variance ranges from 45.05 - 60 Mbps2, whereas 

using scalarization method, it ranges from 45.05 - 67.5 Mbps2. 

The CDFs of load variance for the indoor scenario are given 

in Fig. 10, which shows again that the load variance acquired 

by employing the Pareto method tends to be smaller than that 

produced by the scalarization method. The range of load 

variance obtained by Pareto is from 41.5 - 56 Mbps2, whereas 

the scalarization method results in the range between 47.5 - 

59.5 Mbps2. This observation confirms that the Pareto method 

outperforms the scalarization in balancing the traffic loads 

among the nodes. 

 
 

Fig. 9. CDF of Load Variance Outdoor 

 
 

Fig. 10. CDF of Load Variance Indoor 
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In addition, from Figs. 9 and 10, it is known that the median 
difference in load variance between the Pareto and 

scalarization method in outdoor configuration is equal to 3 

Mbps2, while in indoor configuration, the median difference is 

7 Mbps2. As in the case of SNR, the indoor scenario appears to 

benefit more than the outdoor from the use of the Pareto 

method in reducing the load variance. 

 

C. Computation Time 

The Pareto method is found to take a longer time to 

complete in the simulation compared to scalarization method. 

For a total of 500 times simulation, the Pareto method takes 

61.1 hours to complete (7.3 minutes per simulation), while the 

scalarization method only takes about 13.96 hours (about 1.7 

minutes per simulation). It means that Pareto method takes on 

average 4.4 times longer than the scalarization method. This is 

because Pareto method takes into account all possible 

cooperative pairs in the optimization. On the other hand, with 
the scalarization method, the optimization is done iteratively 

and randomly, depending upon the population and the number 

of iterations. This computational results are obtained for 

simulations on Matlab 7.8.0.347 (R2009a) run on a computer 

with Core 2 CPU 4400 (2 GHz) and 4 GHz RAM. A computer 

with higher specifications can be used to get faster 

computation. 

 

VI. CONCLUSIONS 

From the analysis of the optimization results, several points 

can be highlighted. Firstly, in selecting cooperative path pair 

using MOO with the Pareto method, performance indicators 
under consideration are taken care of separately. With the 

scalarization method,  performance indicators of interest are 

incorporated in the scalar fitness function. It is therefore 

expectable that the results of the Pareto method give a better 

compromise of the performance indicators. Secondly, the 

optimization results obtained with the Pareto method are better 

than those obtained using scalarization, as shown by the three 

performance indicators of cooperative diversity networks 

considered herein, i.e., power consumption, signal-to-noise 

power ratio and load variance.  

Thirdly, the advantage of the Pareto method over 
scalarization is more prevalent for indoor cooperative diversity 

networks than for their outdoor counterparts. This is supported 

by the finding that the median difference of SNR between the 

Pareto and scalarization is greater for indoor than for outdoor 

scenario, and similarly so for load variance. Lastly, Pareto 

method requires a longer computing time than scalarization 

does because Pareto method is enumerative while scalarization 

method is random. Hence, if the problem of computation time 

can be alleviated by employing a fast computing processor, the 

use of Pareto method in MOO for cooperative diversity paths 

selection is recommendable. 
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