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Abstract :  Jennic type wireless sensor nodes are utilized together 
with a novel particle filtering technique for indoor localization.  
Target objects are localized with an accuracy of around 0.25 
meters.  The proposed technique introduces a new particle 
generation and distribution technique to improve current 
estimation of object positions. Particles are randomly distributed 
around the object in the sensing area within a circular strip of 2 
STD of object distance measurements. Particle locations are 
related to object locations by using Gaussian weight distribution 
methods. Object distances from the transmitters are determined 
by using received RSSI values and ITU-R indoor propagation 
model. Measured object distances are used together with the 
particle distances from the transmitters to predict the object 
locations. 

 
 Index terms: Wireless sensor node (WSN), received signal 
strength indicator (RSSI), Gaussian weight distribution, 
Standard deviation (STD), particle filter, cumulative distribution  

I. INTRODUCTION  

   Wireless sensor nodes and localization algorithms are 
utilized together to determine the unknown object locations in 
indoors. These nodes are deployed in buildings with wireless 
sensor networks. Object localization such as surveillance, 
access control and location based identification are a few 
applications [1-3]. In most popular localization systems, 
objects carry active radio frequency identification (RFID) 
transmitters or receivers.  Distance calculations can be carried 
out by using time of arrival (TOA) [4], or time difference of 
arrival (TDOA) [5], or received signal strength indication 
(RSSI) [6,7]. RSSI based localization techniques have the 
advantage of using inexpensive hardware.  
      Probabilistic state–space models are also important 
techniques in object localization by predicting the object 
positions with observed RSSI values [8,9]. If   these models 
are linear and all the noise is additive Gaussian then classical 
Kalman filtering [10], technique is used. Another localization 
solution is given by the particle filtering which does not 
depend on any conditions of linearity or Gaussian noise [8,11].    
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      Particle filtering is more robust for inexpensive indoor 
applications like RFID tracking systems. They are sequential 
Monte Carlo methods [12], based on point mass (or “particle”) 
representations of probability densities. They can be applied to 
any state-space model and generalize the traditional Kalman 
filtering methods.  
     Particle filter was first proposed by Kitagawa et al. in 1996, 
[18]. In the proposal each particle is randomly distributed and 
the trajectory of particles in successive prediction stages is 
simulated by using an assumed model. In the filtering stage, 
the weight proportional to likelihood is utilized to get the next 
set of particles which represented the filter distribution. 
Recently J.Tsuji et al. in 2010, [13] employed particle filtering 
for localizations with ZigBee devices. In this study, object 
locations are determined probabilistically by using previous 
object locations and their received RSSI values with randomly 
distributed particles.   
     In our study, a novel particle filtering technique is 
introduced to determine the unknown object locations by 
utilizing a distribution model of the random particles. In this 
technique, random particle generation is carried out in circular 
strips dependent on received RSSI values around the sensors 
instead of randomly distributed across the total test area as in 
literature.  
      Sequential estimation is used to increment the position of 
the particles as RSSI data is gathered during the process. RSSI 
data, arriving from the sensor nodes, is received at object 
location and then converted into position data. This object 
position data is later compared with the particle position data. 
The difference between two is utilized in a Gaussian 
probabilistic model to obtain the weights of the particles. 
Particles with smaller differences with measured object 
locations produced more weights and their likelihood of 
transferring to next sequential stage is increased.  Each 
sequential stage corresponded to an object position 
measurement and identified as iteration. Weighted Particles 
are translated to next stage by incremental distances at every 
iteration and they get closer to object location. At the end of a 
number of iterations, particle averaging reveals an accurate 
object position. 
 

II. METHODOLOGY 

A. Particle Filtering Approach 

     An object location xt can be calculated by using particle 
filtering technique [12], where xt  depends on previous 
location, xt-1,  and it  is obtained probabilistically.  Received 
RSSI vector yt= (RSSI1,RSSI2,…RSSIt) is related to object
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location xt and it is also calculated probabilistically.  
Consequently, Particle filter technique estimates a distribution 
of xt. 
     An object location, defined by a distribution of  xt ,can be 
described by a set of estimated locations identified as 
“particles” ,{pk} , where k is the user defined particle numbers 
(1  ≤  k  ≤ N).   A particle pk can have a location xk and its 
weight can be wk  [13]. The weight of a particle can be 
identified by utilizing the minimum distance difference, Δxk, 
between the measured object distances and the particle 
distances to transmitters. 
      A weight function which produces larger weights with 
smaller Δxk values is required for particles to move to next 
iteration. Hence standard normal distribution function with 
standard deviation value of 1 is utilized as weight function 
with equation (1).  
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where k is the particle index and R is the standard deviation 
and equal to 1.     
       wk values of the particles are used  to determine which 
particles will be employed in the current object location guess 
process.  Particle weights are normalized with respect to total 
sum of particle weights and sum of normalized particle 
weights are equal to 1. See equation (2). 
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      In each iteration, particles are incremented by a motion 
model and then corrected by the sensor measurement.  
Particles are generated randomly in this motion model. In the 
correction step, each particle is moved according to the 
incoming RSSI sensor data. If a particle is far from the 
measured object position with respect to receiver sensor then 
the particle weight is lowered, if the particle is close to 
measured object position then its weight is increased. 

 

 

B. Cumulative Resampling 

      A cumulative distribution function [14], of normalized 
weights of the particles is generated between 0 and 1 to 
determine which particle must be carried in current object 
location estimation. See equation (3). 
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                  (3) 
Where k is particle index and wnorm i is the normalized weight 
for the particle with index i. 
      Cumulative distribution function utilizes total number of 
particles and its x axis is particle index and its y axis is 
cumulatively normalized particle weights.  Normalized 
weights are cumulatively added as the particle index is 
increased.   

The sum of all previous particles’ normalized weights until 
current particle will be the cumulative normalized weight of 
the current particle defined by y coordinate and its particle 
index defined by x coordinate of cumulative distribution 
function. Since all the particles are included in this process,  
minimum values of the cumulative distribution function is  0 
particle index  and 0 cumulative normalized weight while 
maximum values of  cumulative normalized weight is  1 and 
particle index  is the total number of particles in current 
process.  
      Cumulatively normalized weighted particles will be 
transferred to next iteration with equal probability by 
assuming a random model. In this model, random floating 
point numbers between 0 and 1 are generated at equal numbers 
with particles.  Any random number which is closest to any 
cumulative normalized weight will be selected and the 
corresponding particle index will be included in current object 
location guess process. During the selection process, particles 
with higher cumulative normalized weights are transferred to 
next iteration. Particles with smaller cumulative normalized 
weights will be ignored. Selected particles will be incremented 
to next iteration and included in next object location guess 
process. Coordinates of selected particles are averaged out to 
give the estimated current position of the object.  
 
 
C. Particle Generation  

A rectangular, obstacle free, sensing area is deployed in this 
study. It has 4 transmitter sensors at 4 vertexes of the 
rectangular area and a target object at T in Fig. 1. Particles are 
generated randomly between predetermined boundaries. RSSI 
values, arriving from the transmitter sensors, are measured at 
object point and converted into distance values by using ITU-
R indoor propagation path loss model [15].   RSSI values, 
received by the receiver sensor on the object [16], can be 
expressed by this model as  
 
 
 )log(. dGPRSSI βα −++=                                (4)  
 
 
      Where P is the transmission power, G is the receiver gain, 
α and β.log(d) are the amount of path losses according to ITU 
model.  d is the distance between the object and the related 
transmitter sensor node across the sensing area. 
      In particle filtering technique, in literature, random 
particles are generated and distributed randomly across the 
total sensing area which resulted large number of iterations to 
localize the object. But in this study, Random particles are 
generated and randomly distributed within limited circular 
strip areas around each transmitter sensor node as shown in 
Fig. 1. A circular strip is generated between the sensor area 
boundaries AD and AB and the circles with radiuses (dA1 + 
dASTD) and (dA1 - dASTD) for sensor A .  dA1 is the first dA  
measured object  distance to transmitter node A and it is 
calculated with equation (4) by using RSSI measurements 
received from A.  dASTD is the STD value of all the calculated  
dA values from RSSI recordings at object location with 
respect to A transmitter.   
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Fig. 1. Circular strip between dA1 + dASTD and dA1 - dASTD circles for 
1st object distance dA1 with transmitter sensor A. 

      Similar circular strips are also generated around the other 
transmitter sensors as seen in Fig. 2. Transmitter sensor 
coordinates will be utilized to determine the boundaries of the 
particles. Y coordinates of the random Particles will be 
between ytop and ybottom as shown for transmitter sensor A in 
Fig. 1.  Y coordinates of all the particles in different circular 
strips can be determined by using d distances between the 
measured object locations and transmitter nodes and their STD 
values.  

   
 
Fig.2. Circular particle strips with respect to sensors  with coordinates 
A(xA,yA), B(xB,yB), C(xC,yC), D(xD,yD) 
 
D.  Ytop and Ybottom calculations for A, B, C and D  
         sensors 
     Rectangular sensing area boundaries are defined by AB, 
BC, CD and AD where AB = CD and BC = AD. General 
sensor coordinates are deployed as A(xA,yA), B(xB,yB), 
C(xC,yC), D(xD,yD). Circular strips are generated with first dA, 
dB, dC and dD distances which are calculated for first 
received RSSI values.  Top and Bottom values for dA, dB, dC 
and dD are defined as follows:  
      dAbottom = dA - dASTD ,  dBbottom = dB - dBSTD , dCbottom  = 
dC + dCSTD , dDbottom  = dD + dDSTD and  dAtop = dA + dASTD , 
dBtop = dB + dBSTD  , dCtop = dC - dCSTD, dDtop = dD – dDSTD.    
Ytop and Ybottom values are presented here with respect to 
sensing area boundaries and A and B sensor coordinates.  

a)  If dAbottom ≤AD or dBbottom ≤AD , than (Ybottom = yA) for 
sensor A or   (Ybottom =  yB)  for sensor B.  

b) If dAtop ≤AD or dBtop ≤AD  than (Ytop =  yA + dAtop)  for 
sensor A or  (Ytop = yB + dBtop) for sensor B.  

c) If AD ≤  dAbottom ≤ AB or AD ≤ dBbottom ≤ AB , than 
(Ybottom = yA) for sensor A or (Ybottom = yB)  for sensor B.   

d) If AD ≤ dAtop ≤ AB or AD ≤ dBtop ≤ AB , than   (Ytop=yA 
+ AD) for sensor A or (Ytop = yB  + BC)  for sensor B.   

e)  If AB ≤ dAbottom ≤ 22 BCAB + or  

AB ≤ dBbottom ≤ 22 BCAB +  than (Ybottom = yA +
22 )( ABbottom xxdA −− ) for sensor A or (Ybottom =  yB  +

22 )( ABbottom xxdB −− ) for  sensor B.  

f) If AB ≤dAtop ≤ 22 BCAB + or  

AB ≤  dBtop ≤ 22 BCAB +  than (Ytop = yA + AD)  for 
sensor  A or  (Ytop = yB  + BC) for sensor B.     

g)  If 22 BCAB + ≤dAbottom or 22 BCAB + ≤dBbottom  
than there are no Ybottom due to no intersection with the 
sensor area boundaries.   

h) If 22 BCAB + ≤dAtop or 22 BCAB + ≤dBtop  
than (Ytop = yA + AD) for sensor A or (Ytop = yB + BC) for 
sensor B.   

   Similarly, Ytop and Ybottom values with respect to sensing area 
boundaries and C and D sensor coordinates can also be 
determined by using symmetry properties with A and B 
sensors. Finally, they will all be deployed to calculate the 
coordinates of the random particles.   

 
E.  (x, y) coordinates of  random particles   

Y coordinates of the random particles can be expressed as (in 
MATLAB version 9) :  

bottombottomtop yyykRandy +−×= )(),1(                  (5) 
where k random numbers are generated between 0 and 1. A 
random circle with radius RRandom and circle centre A(xA , yA)  
is generated between the circles with radiuses dA1 + dASTD  
and  dA1 - dASTD  for sensor  A  as an example.  RRandom is 
given as  

)()2(),1( 1 stdstdRandom dAdAdAkRandR −+××=      (6)   
The equation of the RRandom circle can be expressed as  

222 )()( RandomAA Ryyxx =−+−                   (7) 
Hence the x coordinate of the same random particle, can be 
calculated as  

AARandom xyyRx +−−= 22 )(                   (8) 
RRandom and x,y coordinates  are similarly calculated for   
B,C,D  sensors  as well. 
 
F. New particle prediction mechanism 

    Initially, {Pk} random particles are generated for each 
circular strip. There are 4 circular strips and (x, y) coordinates 
of the particles in these strips are calculated.  The first 
estimated object position is identified as the mean values of all 
the particle coordinates as shown in equation (9). 
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     (X1st-estimate, Y1st-estimate) coordinates are the first estimated 
coordinates of the object location.  Object’s first position 
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estimation can converge to its second position estimation by 
deploying 2nd object distance measurements dA2, dB2, dC2 
and  dD2 as follows; 
      The difference between the 2nd and 1st object distance 
measurements with respect to sensors are expressed as (dA2 - 
dA1), (dB2 - dB1), (dC2 - dC1), (dD2 - dD1). The mean (SMEAN), 
and standard deviation (SSTD) of these 4 differences are 
determined in order to quantize the particle incremental 
motion between iterations. Particle motion consists of a step 
distance L and a step angle Ɵ.  L step distance is related to 
SSTD and SMEAN of two consecutive object distance 
measurements with respect to sensors, while Ɵ angle is 
selected between 0 and 2π  radian for each particle step. 
These quantities define the amount of movement as the 
particle converges from previous position to next position.  
L and Ɵ are defined as:  
 

)()2),1(( STDMEANSTD SSSkRandL −+××=            (10) 

)2),1(( πθ ××= kRand                                     (11)           
 
    As the particle at (x,y)  position moves to a new position  by 
the amounts  of  L and Ɵ ,  the new  modified particle position 
coordinates  become ;  
 

)( 0θCosLxxnew ×+=                               (12) 

)( 0θSinLyynew ×+=                               (13) 

 
Hence (xnew , ynew)  coordinates of the particles are calculated 
by using received RSSI data and the resulting STD and 
MEAN values of distance measurements between iterations.    
Finally these particles are transferred to next iteration step.   
    Distance differences between the 2nd object distance 
measurements and the distances of new particles,

),( newnew yx , with respect to sensors are determined.  
Minimum distance differences are defined as Δxk .  During the 
second iteration, new particle weight calculations are utilized 
for the ),( newnew yx particles by using minimum distance 
differences, Δxk and equation (1).  
   New particle weights are normalized with equation (2) and 
the cumulative distribution of normalized weights is 
determined with equation (3).  Cumulatively normalized 
weights are compared with the randomly generated floating 
point numbers and closest particles with new coordinates are 
selected as ),( 11 ++ newnew yx  and transferred to next 
iteration.  
     Second estimated object position is identified as the mean 
value of these particles with coordinates ),( 11 ++ newnew yx  
and expressed as (X2nd- estimate, Y2nd- estimate). A block diagram for 
operational phases is shown in Fig. 3.   
     Similar correction, modification and translation stages can 
be deployed for 3rd object position estimation and the new 
estimated object position is expressed as (X3rd-estimate, Y3rd-

estimate).  This procedure continues until the total number of 
object position measurements are processed sequentially 
between iterations. 

 
Fig. 3. A general block diagram for operational phases (initial phases 
are highlighted)      

III. IMPLEMENTATION 

     Sensing area where the measurements are carried out has 
dimensions of 5 m by 3 m in the middle of a basketball field 
and a grid space of 0.5 m as shown in Fig. 4. Measurement 
model, utilized here, does not include multipath, fading or 
shadowing effects due to small size and open boundaries of 
the test area.  There are no obstacles across the sensing area 
and all the measurements are taken as line of sight 
measurements. Many tests are carried out and a large number 
of unknown object locations is estimated. A number of them is 
presented as an example in this paper. 

 
Fig. 4. 5mx3m sensing area with 4 transmitters A,B,C,D and 4 
objects with receivers at  X, Y, Z, Q locations 
 

    Jennic type transmitters and receivers, [17], are employed in 
the experiments.  M = 100 LQI readings are received from 
each transmitter A,B,C,D  by the receiver on the target at   
different locations.  LQI values are converted into RSSI values 
by using LQI-to-RSSI Jennic conversion tables. Later on, 
RSSI values are converted to “d” distance values between the 
transmitters and receiver by using equation (4). All the RSSI 
data is collected by the receiver on the object and sent to a 
gateway server computer. All the computations are carried out 
with this server.  
      At any object location, a set of 4 d distance values,  { dA, 
dB, dC , dD }, are calculated by using received RSSI values  M  
times.  Each set corresponds to a single iteration and there is 
M number of maximum iterations. The MEAN and STD 
values of these M distances are calculated and utilized to 
develop the circular strips across the sensor area. User defined 
number of random particles within the circular boundaries are 
generated and object coordinates are estimated at every 
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iteration by going through the operational stages in block 
diagram in Fig. 3.   
      Circular strips of random particles around each transmitter 
sensor and the estimated object position for the object at 
X(2,1) location are presented at the end of first iteration in Fig. 
5a. As the particles move from first iteration to next iterations, 
particle positions and the estimated object positions are 
displayed in Fig. 5b to 5f.  The system is also deployed to 
estimate the location of the objects by using standard particle 
filtering in literature where the particles are distributed 
randomly across the total test area as shown in Fig.5g .  
 
 

 
Fig. 5a. Iteration 1, object position (2,1) , estimated object position 
(2.2 , 1.4)   

  
Fig.5b. Iteration 3, object position (2,1) , estimated object position 
(2.1 , 1.4) 

 
  Fig.5c. Iteration 5, object position (2,1) , estimated object position 
(2.1 , 1.3) 
 

      10 random particles for each circular strip, totaling 40 
particles for 4 strips, are utilized as an example to give an 
overview of particle transition between the iterations and to 
estimate the object location Y(1, 2).  10 Random particles are 
generated and their (x,y) coordinates are calculated for each 
circular strip by using equations (5),(6) and (8). 

     The mean value of 40 particle coordinates is defined by 
equation (9) as the first estimated object position of (X1st-estimate, 
Y1st-estimate) = (1.551, 1.849).  
 
 
 

Fig. 
5d. Iteration 10, object position (2,1) , estimated object position 
(2.2 , 1.1) 

   
   Fig. 5e. Iteration 30, object position (2,1), estimated object position 

(2.1 , 0.9) 
 

 
Fig.5f. Iteration 50, object position (2,1), estimated object position 
(2.1 , 1.05) 

 
Fig.5g. Iteration 30, object position (2,1), estimated object 
position (2.3 , 1.4) , random particle distribution 
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     Differences between the 2nd and 1st calculated object 
distances with respect to sensors, their mean (SMEAN), and  
Standard deviation (SSTD) values are determined. They are 
utilized with (x,y) coordinates of initial random particles and 

These cumulative wnorm values are compared with 10 
randomly   generated numbers between 0 and 1. Particles with 
closest cumulative normalized weights to random numbers are 
selected as (xnew+1,ynew+1) particles  and they are incremented 

Equations (10) and (11) to determine the xnew and ynew 
Coordinates for object location (1,2). See Table I. 

to second iteration as shown in Table I. 

TABLE  I  
RANDOM PARTICLES  (X , Y) ,   TRANSLATED  PARTICLES (Xnew, Ynew)   TO 1ST  ITERATION  AND TRANSLATED  PARTICLES (Xnew+1  , Ynew+1)  TO  2ND  

ITERATION  FOR OBJECT LOCATION (1,2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The distances between (xnew , ynew) particles and transmitter   
sensors A , B , C , D are calculated and the differences 
between these distances and the  2nd object distances  dA2 , 
dB2 , dC2 , dD2  to sensors are deployed . The minimum of 
these 4 differences is termed as   “min diff” for each particle. 
Particle weights are calculated by using these minimum 
differences and they are normalized to give wnorm values as 
shown in Table II for 10 particles.   Cumulative distribution of 
wnorm values for 10 particles is shown graphically in Fig. 6.   

 
 

 
 
 

TABLE  II  
PARAMETERS USED BETWEEN 1ST AND 2ND ITERATION 

FOR OBJECT  LOCATION (1,2) 
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1 0.280 
 

0.383 0.1243 0.1244 0.4173 
2 0.27 

 
0.38 0.124 0.249 0.049 

3 1.10 0.21 0.070 0.319 0.902 
4 0.75 

 
0.30 0.097 0.416 0.944 

5 0.12 
 

0.39 0.128 0.545 0.490 
6 1.20 

 
0.19 0.062 0.607 0.489 

7 1.065 
 

0.22 0.0730 0.6809 0.3377 
8 0.452 

 
0.36 0.1160 0.7977 0.9001 

9 0.740 
 

0.303 0.0980 0.8961 0.3692 
10 0.662 

 
0.320 0.1039 1.0000 0.1112 

Particle 4 is highlighted to trace the conversion stages as an 
example of particle transfer to next iteration in Table I .  
Hence the second estimate of object position coordinates are 
calculated as the mean value of  ( xnew+1 , ynew+1 ) coordinates  
in Table I and calculated as  (x2nd-estimate , y2nd-estimate) = (1.32 , 
2.086) . 
 

Fig. 6. Cumulative distribution function for 10 particles; Cumulative 
normalized weights is (y axis), particle index is (x axis). 
 
 

 
 
Similar procedures are repeated and 3rd estimate of object 
location coordinates are determined as (X3rd-estimate, Y3rd-estimate) 
= (1.165, 1.986).  In conclusion, 10 particles are generated 
with equal probability for each circular strip at first iteration. 
At the end of first iteration, only particles with numbers 1, 3, 
4, 5, 9 are translated to second iteration as shown in Table I. 

Initial 
particle 
number 

random particles 
generated 

L  & Ɵ 
included   x , y 

 
Xnew + 1 

 

 
Ynew + 1 

Translated 
particle 
numbers x y xnew ynew 

1 1.2130 
 

2.4150 1.385 2.017 0.9380 2.4680 4 

2 1.1760 
 

2.6850 1.597 2.402 1.3850 2.0170 1 

3 
 

2.3960 
 

0.3760 
 

2.749 0.738 1.2040 2.7090 9 

4 0.5410 
 

2.7080 0.938 2.468 1.2040 2.7090 9 

5 1.4270 
 

1.8740 1.096 1.511 1.0960 1.5110 5 

6 
 

2.5450 
 

0.2890 2.898 0.537 1.0960 1.5110 5 

7 2.5900 
 

0.8250 2.509 1.275 2.7490 0.7980 3 

8 2.3750 
 

1.6210 1.895 1.475 1.2040 2.7090 9 

9 0.0730 
 

2.8380 1.204 2.709 0.9380 2.4680 4 

10 0.5160 
 

2.8600 1.010 2.750 1.3850 2.0170 1 
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Every iteration, the number of independent particles is 
decreased and same particles appear more and more. This 
process in return gets the particles closer to each other and 
produces an estimated object position closer to actual object 
position. Object and estimated object coordinates for different 
number of iterations are presented in Fig. 7 and Fig. 8.  
Average of estimated object coordinates with 20 and 50 
iterations are calculated and the error distances between the 
actual and estimated object locations are determined by using 
the following equation 
 

2
.

2
. )()( objestobjobjestobj yyxxe −+−=                 (14) 

 

 
Fig. 7a. Object coordinates (2,1)  and  estimated object coordinates 
for 20 iterations  

 

 
Fig. 7b. Object coordinates (1,2)  and  estimated object coordinates 
for 20 iterations              
 

 
Fig. 7c. Object coordinates (4,1)  and estimated  object  coordinates  
for  20 iterations     

       
   Fig. 8a. Object coordinates (2,1) and  estimated object coordinates 
for 50 iterations       

 
Fig. 8b.  Object coordinates (1,2)  and  estimated   object  coordinates 
for 50 iterations  
 

  
 Fig.  8c.  Object coordinates (4,1) and estimated object  coordinates 
for 50 iterations 
 
 
 
 
 
 
 
 

 
Table III and Table IV summarize the estimated object 
coordinates and the error distances between the object and 
estimated object coordinates for circularly distributed and 
randomly distributed   particles.  
Additionally these error distances are presented in bar chart 
form in Figure 9. It is clearly seen that the circularly 
distributed particles give less error distances compared to 
randomly distributed particles with particle filtering. 
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TABLE  III  

ACTUAL  AND  ESTIMATED OBJECT COORDINATES WITH PARTICLE FILTERING FOR CIRCULAR AND RANDOM  PARTICLE DISTRIBUTIONS  FOR 20 
ITERATIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV  
  ACTUAL  AND  ESTIMATED OBJECT COORDINATES WITH PARTICLE FILTERING FOR CIRCULAR AND RANDOM  PARTICLE DISTRIBUTIONS  FOR 50  

     ITERATIONS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  
             
                  Fig. 9. Error distances at different object points for 20 and 50 iterations 
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(x,y) 
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coordinates with 
circular particles 

Error  (m) 
(20iterations) 
(circular ) 

Estimated obj  
coordinates with 
Random particles 

Errors (m) 
(20iterations) 
(Random) 

2 , 1 2.109 , 1.353 0.37m 2.300 , 1,400 0.50m 
1 , 2 1.118 , 1.766 0.26m 1.253 , 2.280 0.38m 
3 , 2 2.913 , 1.654 0.35m 3.231 , 2.321 0.39m 
4 , 1 3.894 , 1.147 0.18m 4.122 , 1.242 0.27m 
1 , 1 1.200 ,1.250 0.32m 1.352 , 0.761 0.43m 
2 , 2 2.242, 2.262 0.36m 2.328 , 1.656 0.48m 
3 , 3 3.241 , 3.233 0.34m 2.752 , 3.431 0.50m 
4 , 2 4.232 , 2.121 0.26m 4.241 , 2.223 0.33m 
2 , 3 2.172 , 3.252 0.30m 2.256 , 3.261 0.37m 

 Ave Error 0.30m Ave Error 0.40m 

Object 
coordinate 
(x,y) 

Estimated  obj 
coordinates with 
circularparticles 

Error  (m) 
(50iterations) 
(circular) 

Estimated obj  
coordinates with 
Random particles 

Errors (m) 
(50iterations) 
(Random) 

2 , 1 2.121 , 1.041 0.13m 2.221 , 1.250 0.33m 
1 , 2 1.148 , 1.816 0.23m 1.241 , 2.253 0.35m 
3 , 2 2.882 , 1.743 0.28m 3.257 , 2.263 0.37m 
4 , 1 3.913 , 1.107 0.13m 4.234 , 0.841    0.28m 
1,1 1.25 ,  0.95 0.25m 1.183 , 0.733 0.32m 
2,2 2.16 , 1.93 0.17m 2.241 , 1.800 0.31m 
3,3 3.224 , 3.131 0.26m 3.161 , 2.752 0.29m 
4,2 4.221 , 2.211 0.30m 4.282 , 2.271 0.39m 
2,3 2.142 , 3.162 0.22m 2.251 , 2.742 0.36m 

 Ave Error 0.21m Ave Error 0.33m 
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IV. CONCLUSIONS 

     Unknown object locations are determined by using a novel 
implementation method introduced with particle filtering.  The 
new method deploys a new technique in generation and 
distribution of the particles and estimates the object 
coordinates in time domain. 
    Secondly, ITU-R indoor propagation model is used in this  
study due to RF frequency ranges utilized with Jennic  
wireless sensors. Due to small size of the sensing area in a 
large open space of indoors,  affects such as multipath, fast 
fading, shadowing or slow fading and RF noise are not 
included in the calculations. The measurements are taken as 
line of sight measurements and there are no obstacles across 
the sensing area.  
     Random particles are generated in circular strip areas which 
are defined by the area differences between the circles with 
radiuses dSENSOR  ±   dSTD  instead of randomly  generated 
across the sensing area as in literature. Hence less number of 
iterations is employed to achieve higher accuracies in object 
localization. 
     dSENSOR is the distance of the object to each transmitter 
sensor calculated by deploying received RSSI values  with 
ITU propagation model.  dSTD is the standard deviation of 
these  distances . Upper and lower limits of these circles are 
the boundaries of the sensing area.  
     Selective Particles are incremented between every iteration 
depending on their weights and their cumulative weight 
distributions. New particle positions are predicted by adding 
finite distances depending on the received RSSI values 
between subsequent iterations to their previous position 
coordinates.  
      Particles with larger weights are carried to current guess 
process more than one. If the particle weight is small this 
particle is not carried to current guess process and it is ignored. 
This process is called correction in original particle positions. 
The process continues with particles which have larger 
weights hence closer distances to estimated object positions at 
each iteration. At the end of each iteration, the estimated 
object position is calculated as the mean value of the weighted 
particle coordinates which are incremented to next iteration.  
    An overall average localization error of around 25 cm is 
achieved by applying the proposed distribution method of 
particles. Classical particle filtering with random distribution 
is compared with the new technique as shown in Fig.5g. The 
results show in Table IV that the new technique has a better 
positioning accuracy compared to classical particle filtering. 
The localization experiments are repeated for many unknown 
object locations. In each case the positioning accuracies were 
around 20-30cm and better than the results with classical 
particle filtering with random particle distribution.  
     Finally, the newly developed technique can be deployed in 
obstacle free parts of indoors to determine the unknown object 
locations very accurately. Further research will be carried out   
in indoors with obstacles and localization algorithms will be 
developed to reduce errors further. 
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