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Abstract—An insight on the lattice decoder for flat-fading
multiple antenna wireless communications systems is presented
in this paper. In particular, we show that by formulating
the decoding problem as a bounded-error subset selection, the
resultant decoder finds the nearest lattice point to the received
signal vector such that the search is bounded inside a hypercube
centered at the received vector. The dimensions and orientation
of the hypercube can be adjusted based on the diversity of the
channel in order to improve its performance. The search for
the nearest codeword to the received signal vector is solved by
modeling the problem as an Integer Program (IP). Simulation
shows that the proposed decoder is inferior to the Sphere Decoder
(SD) by about 1-dB while its complexity is superior to the Sphere
Decoder at very low signal to noise ratio.

I. INTRODUCTION

Searching for the nearest lattice point to a given point in
multidimensional lattices arises in Multi-Input Multi-Output
(MIMO) wireless communication systems, e.g., Spatial Mul-
tiplexing (SM) and Space-Time (ST) Codes. When the con-
taminating noise is Gaussian, the optimum receiver, the Max-
imum Likelihood (ML), is the minimum distance receiver
which leads to exhaustive search across all lattice points.
Unfortunately, with MIMO systems the lattice size grows
exponentially with the number of transmit antennas and the
ML solution would be infeasible. In particular, consider the
complex-valued baseband MIMO model in flat fading channels
with M transmit and N received antennas. Let the N × 1
received signal vector ỳ,

ỳ = H̀x̀ + ẁ (1)

with the transmitted signal vector x̀ ∈ ZM
c whose elements are

drawn from q-QAM constellation and Zc is the set of complex
integers, the N × M channel matrix H̀ whose elements
hij represent the Rayleigh complex flat fading gain from
transmitter j to receiver i with hij ∼ CN (0, 1). In this paper,
it is assumed that channel realization is known to the receiver
through preamble and/or pilot signals, and N ≥ M . The N×1
complex noise vector ẁ has independent complex Gaussian
elements with variance σ2 per dimension. Throughout the
paper, we will consider the real model of (1)

y = Hx + w (2)
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Define m = 2M, n = 2N , then y = [R(ỳ) I(ỳ)]T ∈ Rn,
x = [R(x̀) I(x̀)]T ∈ Zm, w = [R(ẁ) I(ẁ)]T ∈ Rn, and

H =

( R(H̀) −I(H̀)

I(H̀) R(H̀)

)
∈ Rn×m,

where R(.) and I(.) are the real and imaginary parts, re-
spectively. ML solution finds the symbol estimate x̂ML that
minimizes the 2-norm of the residual error. In particular

x̂ML = arg min
x⊂Λ

‖ y −Hx ‖2 (3)

where Λ is the lattice whose points represent all possible
codewords at the transmitter and Zm is the set of integers
of dimension m. The coordinates of the lattice points are all
integers whose elements are drawn from the L = log2(q)-PAM
derived from the q-QAM constellation. According to (2), ML
solution leads to solving integer least-squares problem which
is, in general, NP-hard [1]. Moreover, the number of lattice
points in a given lattice Λ can be extremely large even for a
reasonable number of transmit antennas. In SM for example, if
M = 4 and 16-QAM constellation is used, then the number of
all possible lattice points is 164 codewords. Another difficulty
comes from the fact that the elements of x̂ are restricted to
be integers and can only take values from the corresponding
L-PAM.

Approximate solutions to (3) include the Zero Forcing (ZF)
and MMSE solutions, V-BLAST which is a Nulling and
Canceling technique with or without optimal ordering [2], [3].
Exact methods with reduced complexity is found for special
orthogonal Space-Time Block Codes (STBC) [4], [5]. The
Sphere Decoder (SD) of Fincke and Pohst searches for the
lattice point inside a sphere centered at the received vector
[6]–[8]. The SD achieves near-optimum performance but its
complexity is a function of the SNR; a major drawback of the
sphere decoder is that its average complexity is high for low
signal to noise ratio and decreases with high SNR; this makes
it difficult to use for low SNR environments [9].

The contribution of this paper can be summarized in the
following two points. First, we show that by reformulating
the decoding problem as a bounded-error subset selection, the
resultant decoder finds the nearest lattice point to the received
vector inside a hypercube centered at that point, hence the
name ”Cube Decoder” (CD). We will show that the dimensions
of the hypercube depends on channel diversity. In particular,
for diverse channel, the channel matrix is well-conditioned
and the cube will not be skewed much. On the other hand,
for non-diverse channel, the channel matrix is ill-conditioned
and the cube will be highly skewed. The second contribution,
we show by simulation that the complexity of the proposed
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decoder is lower than the SD for very low SNR which makes
it suitable for low SNR environments.

II. THE BOUNDED-ERROR SUBSET SELECTION

We will use the bounded-error subset selection problem for
deriving the cube decoder. The bounded-error subset selection
was introduced by the authors in [10], [11] which we review
here for completeness. In the subset selection problem it is
required to find the best, according to some criterion, signal
representation for a signal vector y using an overcomplete
dictionary represented by the N dimensional vectors spanning
the column space of the matrix H. By construction, the number
of basis vectors M in the dictionary is such that M À N . In
case of sparseness criterion, it is required to find the sparsest
vector x (the vector x with the minimum number of non-zero
coefficients) such that

y ' Hx. (4)

It is known that the subset selection problem is NP-hard [1];
there are several approximate solutions to the subset selection
problem with low complexity (e.g., [12]–[15]). The bounded-
error subset selection finds the sparsest solution vector x by
relaxing the equality constraint and introducing a bounded
version of (4)

ymin ≤ Hx ≤ ymax (5)

where, ymin = y − ~ε1 and ymax = y + ~ε2. Here, ~ε1 and ~ε2
are error vectors that could represent model uncertainties. The
relaxation introduced in the bounded-error subset selection
allows more degrees of freedom which can be used to find the
sparse solution to (5). Sparseness is imposed by minimizing
the number of non-zero elements in the solution vector x. This
can be achieved as follows: if xk ∈ {0, 1}, then the number of
non-zero elements in x is

∑
k xk = 1T x where 1 is a vector

of all ones. Hence finding a sparse solution leads to following
binary integer program

minxk∈{0,1} 1T x

s.t. ymin ≤ Hx ≤ ymax
(6)

The integer program (6) is called the bounded-error subset
selection.

III. THE CUBE DECODER

In this section, we develop the cube decoder by formulating
the search problem as a bounded-error subset selection. It
should be noted that the objective function, 1T x, in (6) is
equivalent to ‖ x ‖1 because xk assume only non-negative
values. Hence, the bounded error subset selection (6) can be
re-written as

minxk∈{0,1} ‖ x ‖1
s.t. ymin ≤ Hx ≤ ymax

(7)

Since in decoding problems we are only interested in finding
the transmitted codeword x that is nearest, in some sense, to
the received signal y; then solving a feasibility optimization
problem would suffice to get an estimate to the transmitted
codeword. Feasibility optimization problems finds the solution

that fulfills the constraints regardless of the objective function.
For example, the constraint in (7) guarantees that the estimated
codeword x will be bounded, in some sense as we will
see later, to the received signal y. However, solving only
a feasibility problem would not reduce the estimated error
because this has not been considered in the optimization. In
order to improve the estimation performance, minimizing an
objective function of the error would reduce the estimation
error. In this paper, we consider the `1 norm of the residual
r = y −Hx as an objective function; the choice of this
particular objective function was made based on the following:
(1) the corresponding decoding problem reduces to bounded-
error subset selection with known solution. (2) it turns out
that modeling the decoding problem as a bounded-error subset
selection has an interesting geometric interpretation, that is the
search space lies inside a hypercube centered at the received
signal, hence the name ”cube decoder”. This has the advantage
of understanding the behavior of the decoder and provides
space for improvement.

That is, the proposed decoder finds the nearest codeword,
in the `1 sense, to the received signal vector. In order to limit
the search space, the received signal vector y is lower and
upper bounded by ymin and ymax, respectively. The estimated
codeword x̂`1 can be found by solving

x̂`1 = arg minx⊂Λ ‖ y −Hx ‖1
s.t. ymin ≤ Hx ≤ ymax

x ∈ Zm.

(8)

where Λ is the lattice whose points represent all possible
codewords at the transmitter, Zm is the set of integers of
dimension m. ymin = y − ~ε1 and ymax = y + ~ε2, with ~ε1
and ~ε2 are error vectors that depend on the channel matrix H.
The generalized vector inequality is element-wise inequality.
It should be noted that the proposed decoder (8) follows the
bounded-error subset selection model (7). However `1 based
decoding is not new and has been explored before, e.g., [16],
[17]. Here we will provide more insight for such decoding
criterion.

A. Geometric Interpretation

The bounded-error subset selection formulation has an in-
teresting geometric interpretation which is introduced in this
section. We will show that the constraint in (8) represents
a bound on the search space and this bound is in fact
a hypercube. In order to show that, we can see that Hx
represents a skewed lattice, and it is required to find the nearest
lattice point, in the `1-norm sense, to the received signal vector
y. On the other hand, ymin and ymax represent perturbed
versions of y.

By imposing the constraint ymin ≤ Hx ≤ ymax into (8),
we limit the search space such that the estimated codeword
x̂`1 is allowed to take only values such that ŷ = Hx̂`1

lies between ymin and ymax. Figure 1 illustrates the points
of the skewed lattice in 2-dimensional space, the received
signal vector y, the lower and upper bounds ymin and ymax,
respectively. It is clear from the figure that y is located inside
the rectangle whose two vertices are ymin and ymax. Any

ALGHONIEMY and TEWFIK: MIMO CUBE DECODER 105



Fig. 1. Geometric Interpretation in 2-D.

lattice point inside this rectangle would satisfy the constraints
in (8). Hence, only lattice points inside the rectangle can be
declared as possible solutions. In general, since the lattice
under consideration is symmetric along each dimension, then
one can always assume that ~ε1 = ~ε2 = ~ε. Hence, the rectangle
reduces to a square in 2-D, a cube in 3-D and to a hypercube
in multi-dimensions.

The choice of ~ε: is critical and could affect the performance
of the decoder dramatically. This can be understood from
figure 1 where ~ε determine the size of the bounding cube and
in higher dimensions it also determines its orientation as well.
In particular, if the bounds in (8) are tight, which corresponds
to small cube, then it is possible that the corresponding
hypercube does not contain any lattice points inside and then
there would be no solution. On the other hand, if the bounds
are loose, then there would be too many lattice points inside
the hypercube and it would take longer time to find the
corresponding lattice point. Hence, the values of ~ε determine
the performance of the decoder. Since H can be viewed as a
transformation matrix that transforms the original lattice into
a skewed one, then it is natural to set ~ε as the transformed
lattice bases vectors. Hence,

~ε = abs(H)(~v1 + ~v2 + · · ·+ ~vm) (9)

where ~vk is the kth lattice basis vector, and abs(.) is element-
wise absolute. Other choices of the error vectors ~ε are possible
and could be investigated in future research.

Since the lattice under consideration is finite, for low SNR
it is legitimately possible that the received signal vector and
the surrounding cube would lie completely outside the lattice.
In this case, there would be no lattice points located inside the
hypercube, and hence a failure is declared. In this case, the
second constraint in (8) could be relaxed and unconstrained
optimization is solved instead. This fact will be illustrated in
the simulation section where we will show that for very low
SNR, the complexity of the cube decoder is decreased due to
solving unconstrained minimization problem which has lower
complexity than its constrained counterpart.

B. Integer Program Solution

In this section, we will transform (8) into an integer program
form [18], [19]. Let r = r+ − r− where r+, r− are such that
positive values of r goes to r+ while negative values goes to
r− but with positive sign. Similarly, let x = x+ − x−. Define
the 2(m + n)× 1 auxiliary vector u = [r+, r−,x+,x−]T, the
equality matrix Aeq = [I,−I,H,−H], and the non-equality
matrix Aneq = [0,0,H,−H] where I and 0 are the identity
and the zero matrix of size n. Then (8) can be re-written as

û`1 = arg minu fTu

s.t. ymin ≤ Anequ ≤ ymax

r+, r− ≥ 0
x+,x− ∈ L+PAM

(10)

with f = [12n;02m]. 12n and 02m are vectors of ones and
zeros of size 2n and 2m, respectively. L+-PAM represents
only positive integers in the L-PAM set. For example, if q-
QAM constellation is used and the corresponding L-PAM is
represented as {−(L − 1),−(L − 3), · · · , (L − 3), (L − 1)}
where L = log2(q), then the elements of x+ and x− can
only take values from L+ = {1, 3, .., L−1}, i.e., odd positive
integers. A change of variables is necessary in order to remove
the odd constraint. Let x = 2z−(L−1), z+ and z− are defined
similarly, then (10) simplifies to

ˆ̃u`1 = arg minũ fTũ

s.t. Ãeqũ = ỹ

ỹmin ≤ Ãneqũ ≤ ỹmax

r+, r− ≥ 0
z+, z− ∈ Z+

(11)

where ũ = [r+, r−, z+, z−]T. Ãeq and Ãneq are such that H
is replaced by 2H in Aeq and Aneq , respectively. Let the
m× 1 vector 1m be a vector of all ones, then

ỹ = y + (L− 1)H1m (12)

Or equivalently one can say that ỹmax = ỹ + ~ε and ỹmin =
ỹ − ~ε. Now, since z can only take positive integer values,
then the lattice under consideration has bases vectors ~vk =
[0 · · · 0 1 0 · · · 0]T where 1 is at the kth location. According
to (9), ~ε = 2 abs(H)1m, where the factor 2 is due to the
transformation of variables. It should be noted that in order to
reduce the complexity of the IP, relaxation techniques could
be considered [16], [19].

IV. SIMULATION

For comparison purposes, the performance of the proposed
decoder is compared to the ML, SD, ZF and the MMSE
decoders for the uncoded systems. It is assumed that the
transmitted power is independent of the number of transmit
antennas, M , and equals to the average symbols energy. The
package, lp solve, was used to solve (11) [20]. Figure 2
illustrates the performance of the proposed decoder, named CD
decoder, for 4-QAM modulation for N = M = 4. As it is clear
from the figure, the sphere decoder has the best performance
which almost coincides with the ML decoder. However, the
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Fig. 2. Average SER for 4× 4.

performance of the proposed decoder is almost 1-dB inferior
to the ML decoder and performs much better than both the
ZF and MMSE decoders. This could be understood from the
fact that in the Gaussian noise, `1-norm is not the optimal
decoding criterion.

The complexity of the CD decoder is measured as the
average time in seconds consumed by the solver in finding the
nearest lattice point to the received vector. Figure 3 illustrates
the complexity for 4 × 4 MIMO. In particular, figure 3(a)
illustrates the average search time as a function of the SNR
for different modulation schemes. It is clear that increasing
SNR does not reduce the complexity of the decoder by a big
margin. This is due to the fact that in IP, the complexity is
much determined by the initialization of the algorithm, rather
than SNR. This fact can be better understood from figure 3(b)
which shows the average search time as a function of the
constellation size for different SNRs where increasing the SNR
from 10 to 20 dBs reduces the search time by almost 0.01 secs.
However, on the contrary to the SD, the complexity of the
CD decreases for very low signal to noise ratio as illustrated
by figure 4. This reduction in complexity can be understood
from the fact that for very low SNR, the cube decoder solves
unconstrained optimization problem which lowers the search
complexity.

V. CONCLUSION

In this paper we have examined the performance and the
structure of the `1 lattice decoder in a bounded error subset
selection formulation, for multi-antenna wireless systems. In
particular, we have shown that by using the bounded-error
formulation, the proposed decoder finds the nearest lattice-
point inside a hypercube centered at the received signal vector
using a Mixed Integer Linear Program. On the other hand,
we also have shown that the proposed decoder is almost 1-
dB inferior to ML-performance, while its complexity does not
depend on the operating SNR; which makes it suitable for
low SNR environments. Future areas of investigation could
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include: (1) an optimal choice of the cube dimensions and
its orientation that better reflect channel conditions and (2)
applying relaxation techniques for complexity reduction.
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