
 
 

 

  
Abstract: The log-cumulant estimator is proposed to estimate 

the parameters of Weibull distribution based on second-kind 
statistics. With the explicit closed form expressions, the 
log-cumulant estimator is computationally efficient. Parameter 
estimation results from Monte Carlo simulation and real synthetic 
aperture radar (SAR) image demonstrate that the log-cumulant 
estimator leads to better performance when compared to the 
moment estimator. 
 

Index Terms: Weibull distribution, parameter estimation, 
second-kind statistics, log-cumulant estimator 
 

I. INTRODUCTION 
The Weibull distribution has been widely applied to 

synthetic aperture radar (SAR) images of sea, land, weather, 
and sea-ice clutter, and it contains the classical Rayleigh and 
exponential distributions as special cases [1-5]. With two 
parameters (shape parameter and scale parameter), the Weibull 
distribution can fit the experimental data better than the 
one-parameter distributions such as Rayleigh [1, 6]. For 
example, the Rayleigh distribution describes the early 
low-resolution SAR images well enough, but for the higher 
resolution SAR images, the two-parameter Weibull distribution 
can characterize the image contrast precisely [1].  

In order to use the Weibull model in practical applications, 
its parameters should be estimated accurately. The estimation 
methods of Weibull distribution are summarized in [7], 
including linear estimator, maximum likelihood estimator, 
moment estimator, and Bayesian estimator. The linear 
estimator is the linear combinations of order statistics with 
suitably chosen coefficients. However, the determination of the 
coefficients is very difficult owing to a huge amount of 
computation, so it usually requires table look-ups. The 
maximum likelihood estimator is the parameter value that 
maximizes the likelihood function, given the data available. 
However, the maximum likelihood estimator has to solve the  
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nonlinear equation, which usually requires the iterative method. 
The moment estimator estimates the parameters by directly 
using the statistical moments of Weibull distribution, but it 
does not have the explicit closed form and needs some 
numerical optimization techniques. The Bayesian estimator is 
the value of parameter that maximizes the posterior density in 
terms of the Bayesian theorem. However, the Bayesian 
estimator requires the prior distribution, which is not easy to 
determine.  

In this letter, the log-cumulant estimator is proposed for the 
Weibull distribution based on second-kind statistics, which 
relies on the Mellin transform [8, 9]. We compare the 
log-cumulant estimator with the moment estimator, and we 
have observed that the performance of the moment estimator is 
degraded seriously for the small values of the shape parameter, 
but the log-cumulant estimator leads to high estimation 
accuracy no matter what values are chosen for the shape 
parameter, which is validated by parameter estimation results 
from Monte Carlo simulation and real SAR image experiment. 
Consequently, we recommend the log-cumulant estimator 
instead of the moment estimator. 

This letter is organized as follows. The Weibull distribution 
is introduced in Section II. The moment estimator is briefly 
introduced in Section III, and the log-cumulant estimator based 
on second-kind statistics is proposed in Section IV, including 
the derivation process, Monte Carlo simulations, and real SAR 
image experiment. Lastly, this letter is concluded in Section V. 

 

II. WEIBULL DISTRIBUTION 
The Weibull distribution has the following probability 

density function (pdf) [1] 
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where c  ( 0c > ) is the shape parameter and b  ( 0b > ) is the 
scale parameter. The appearance of Weibull pdf is determined 
by the shape parameter c . When 1c < , the pdf curve is 
J-shaped. When 1c > , the pdf curve becomes skewed 
unimodal [7]. Denoting X  as the Weibull-distributed random 
variable with parameters c  and b , it can be demonstrated that 

the new random variable X
b

 is still Weibull-distributed with 

the shape parameter c  and the unit scale parameter ( 1b = ).
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This means that the Weibull distribution can be readily 
normalized. For various values of c , the pdf of Weibull 
distribution is plotted in Fig. 1. Obviously, the value of c  
controls the shape of the pdf. It should be noted that the Weibull 
distribution reduces to the exponential distribution when 1c =  
and to the Rayleigh distribution when 2c = . 

The Weibull distribution can be simulated by [7] 
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log
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where X  is the Weibull random variable with shape parameter 
c  and scale parameter b , and Y  is the random variable 
uniformly distributed in the interval ( )0,1 . With the help of (2), 
the Weibull-distributed samples can be simulated, which are 
shown in Fig. 2 for various values of c . It is apparent that the 
Weibull samples with 0.15c =  show much severer 
impulsiveness than the ones with 2c = . In general, the smaller 
the value of c  is, the more impulsive the Weibull samples are. 
Since the Weibull-distributed samples can be simulated readily, 
we can use the Monte Carlo simulation to compare the 
performance of various parameter estimators. 
 

 
Fig. 1. Pdfs of Weibull distribution ( 1b = ) 

 

 
(a) 0.15c =   

 
(b) 2c =  

Fig. 2. Weibull-distributed samples ( 1b =  and the number of samples 
is 200) 
 

III. MOMENT ESTIMATOR 
The n th order moment of Weibull distribution can be 

written as 
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where X  is the Weibull random variable with parameters c  
and b , and ( )Γ ⋅  is the Gamma function. Hence, the moment 
estimator for the Weibull distribution is straightforward as 
follows [1, 7]: 
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By replacing the actual moments with the sample moments, 
parameters c  and b  can be subsequently estimated from (4) 
and (5), using some numerical optimization techniques such as 
bisection [10].  

The moment estimator was tested for various true values of 
parameter c  according to Monte Carlo simulation. The 
Weibull-distributed samples were simulated independently by 
using (2), and the number of samples is 10000. For each true 
parameter c , the Monte Carlo simulation experiment was 
repeated 100 times independently, and then the average and 
standard deviation of the estimates were computed. The results 
are shown in Table I with standard deviations in parentheses. 
Obviously, the performance of the moment estimator relies on 
the true values of c . For the larger values of c , the moment 
estimator can lead to high estimation accuracy (e.g., 2c = ). 
However, if the smaller values are chosen for the c  (e.g., 

0.15c = ), the moment estimator results in poor performance. 
In other words, the moment estimator is sensitive to samples. If 
the samples show severe impulsiveness, which corresponds to 
the small values of the shape parameter (e.g., 0.15c = ), the 
moment estimator cannot achieve high estimation accuracy. 
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