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Parameter Estimation of Weibull Distribution
Based on Second-Kind Statistics

Zengguo Sun and Chongzhao Han

Abstract: The log-cumulant estimator is proposed to estimate
the parameters of Weibull distribution based on second-kind
statistics. With the explicit closed form expressions, the
log-cumulant estimator is computationally efficient. Parameter
estimation results from Monte Carlo simulation and real synthetic
aperture radar (SAR) image demonstrate that the log-cumulant
estimator leads to better performance when compared to the
moment estimator.

Index Terms: Weibull distribution, parameter estimation,
second-kind statistics, log-cumulant estimator

I. INTRODUCTION

The Weibull distribution has been widely applied to
synthetic aperture radar (SAR) images of sea, land, weather,
and sea-ice clutter, and it contains the classical Rayleigh and
exponential distributions as special cases [1-5]. With two
parameters (shape parameter and scale parameter), the Weibull
distribution can fit the experimental data better than the
one-parameter distributions such as Rayleigh [1, 6]. For
example, the Rayleigh distribution describes the early
low-resolution SAR images well enough, but for the higher
resolution SAR images, the two-parameter Weibull distribution
can characterize the image contrast precisely [1].

In order to use the Weibull model in practical applications,
its parameters should be estimated accurately. The estimation
methods of Weibull distribution are summarized in [7],
including linear estimator, maximum likelihood estimator,
moment estimator, and Bayesian estimator. The linear
estimator is the linear combinations of order statistics with
suitably chosen coefficients. However, the determination of the
coefficients is very difficult owing to a huge amount of
computation, so it usually requires table look-ups. The
maximum likelihood estimator is the parameter value that
maximizes the likelihood function, given the data available.
However, the maximum likelihood estimator has to solve the
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nonlinear equation, which usually requires the iterative method.
The moment estimator estimates the parameters by directly
using the statistical moments of Weibull distribution, but it
does not have the explicit closed form and needs some
numerical optimization techniques. The Bayesian estimator is
the value of parameter that maximizes the posterior density in
terms of the Bayesian theorem. However, the Bayesian
estimator requires the prior distribution, which is not easy to
determine.

In this letter, the log-cumulant estimator is proposed for the
Weibull distribution based on second-kind statistics, which
relies on the Mellin transform [8, 9]. We compare the
log-cumulant estimator with the moment estimator, and we
have observed that the performance of the moment estimator is
degraded seriously for the small values of the shape parameter,
but the log-cumulant estimator leads to high estimation
accuracy no matter what values are chosen for the shape
parameter, which is validated by parameter estimation results
from Monte Carlo simulation and real SAR image experiment.
Consequently, we recommend the log-cumulant estimator
instead of the moment estimator.

This letter is organized as follows. The Weibull distribution
is introduced in Section Il. The moment estimator is briefly
introduced in Section I11, and the log-cumulant estimator based
on second-kind statistics is proposed in Section 1V, including
the derivation process, Monte Carlo simulations, and real SAR
image experiment. Lastly, this letter is concluded in Section V.

Il. WEIBULL DISTRIBUTION

The Weibull distribution has the following probability
density function (pdf) [1]

(= epogﬂ’ x20, &)

where ¢ (¢ >0) is the shape parameter and b (b>0) is the
scale parameter. The appearance of Weibull pdf is determined
by the shape parameter ¢. When ¢ <1, the pdf curve is
J-shaped. When c¢>1, the pdf curve becomes skewed
unimodal [7]. Denoting X as the Weibull-distributed random
variable with parameters ¢ and b, it can be demonstrated that

the new random variable % is still Weibull-distributed with

the shape parameter ¢ and the unit scale parameter (b=1).

1845-6421/10/8213 © 2010 CCIS



110

This means that the Weibull distribution can be readily
normalized. For various values of c, the pdf of Weibull
distribution is plotted in Fig. 1. Obviously, the value of ¢
controls the shape of the pdf. It should be noted that the Weibull
distribution reduces to the exponential distribution when ¢ =1
and to the Rayleigh distribution when ¢ =2.

The Weibull distribution can be simulated by [7]

1/c
X =b[-log(Y)]", 0]
where X is the Weibull random variable with shape parameter
¢ and scale parameter b, and Y is the random variable

uniformly distributed in the interval (0,1) . With the help of (2),

the Weibull-distributed samples can be simulated, which are
shown in Fig. 2 for various values of c. It is apparent that the
Weibull samples with ¢=0.15 show much severer
impulsiveness than the ones with ¢ =2 . In general, the smaller
the value of c is, the more impulsive the Weibull samples are.
Since the Weibull-distributed samples can be simulated readily,
we can use the Monte Carlo simulation to compare the
performance of various parameter estimators.
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Fig. 1. Pdfs of Weibull distribution (b =1)
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Fig. 2. Weibull-distributed samples (b =1 and the number of samples
is 200)

I1l. MOMENT ESTIMATOR

The n th order moment of Weibull distribution can be
written as

E(x")=br(1+2], n=12.., 3)
C

where X is the Weibull random variable with parameters ¢
and b, and I'(-) is the Gamma function. Hence, the moment

estimator for the Weibull distribution is straightforward as
follows [1, 7]:

E(X?) _r(1+2/c)
E*(X) I?(1+Yc)’

E(x)zbr[u%) ©)

By replacing the actual moments with the sample moments,
parameters ¢ and b can be subsequently estimated from (4)
and (5), using some numerical optimization techniques such as
bisection [10].

The moment estimator was tested for various true values of
parameter ¢ according to Monte Carlo simulation. The
Weibull-distributed samples were simulated independently by
using (2), and the number of samples is 10000. For each true
parameter ¢, the Monte Carlo simulation experiment was
repeated 100 times independently, and then the average and
standard deviation of the estimates were computed. The results
are shown in Table | with standard deviations in parentheses.
Obviously, the performance of the moment estimator relies on
the true values of c. For the larger values of c, the moment
estimator can lead to high estimation accuracy (e.g., c=2).
However, if the smaller values are chosen for the ¢ (e.g.,
¢ =0.15), the moment estimator results in poor performance.
In other words, the moment estimator is sensitive to samples. If
the samples show severe impulsiveness, which corresponds to
the small values of the shape parameter (e.g., ¢ =0.15), the
moment estimator cannot achieve high estimation accuracy.

(4)















