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Abstract: A new approach is adopted in this paper for modeling 
the transient magnetic field, radiated by buried grid under 
lightning strokes. This approach summarizes each of three 
methods: analytical formula, based on electrical dipole theory for 
determining radiated magnetic field in infinite conductive 
medium, modified images theory for taking into account the 
interface in the half space, and transmission line approach for 
determining  the longitudinal and leakage currents. The model 
can be used to predict the transient characteristic of grounding 
systems because, it can calculate magnetic field in any points of 
interest, it is sufficiently accurate, time efficient, and easy to 
apply.  

Index terms:  Buried grid, Transient, Magnetic field, Modified 
images theory. 
 

I. INTRODUCTION 

     The numerical modeling methods for grounding systems 
under lightning strokes developed since the early eighties can 
be classified as follows: 
                     -Transmission line approach; 
                     -Circuit approach; 
                     -E.M. field approach; 
                     -Hybrid approach. 

 A.  Transmission line approach 

      The transmission line approach was the first method that 
was used for simulating transient behaviour of grounding 
system. The lossy transmission line concept was applied on 
the horizontal grounding wire by Verma et al. [1], Mazzeti  et 
al. [2], and Velasquez et al. [3], which was described by 
telegrapher's equations. 
    Recently the conventional transmission line approach has 
been extended from simple grounding wire to grounding grid 
[4], and has been improved from uniform per-unit parameters 
to non uniform per-unit parameters [5]. 
    This approach can be either in time and in frequency 
domain, it can include all the mutual coupling between the 
grounding wires; it can also include the soil ionization. 
Moreover this approach can predict surge propagation delay. 
Further the computation time require by transmission line 
approach is extremely less compared with the electromagnetic 
approach. 
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B.  Circuit approach 
    The circuit approach for the transient analysis of grounding 
systems was developed by Meliopoulos et al. [6]. The main 
steps involved in this method are as follows: 
     -Divide the grounding system into many finite segments 
     -Create the equivalent lumped circuit for each segment and 
calculate its parameters 
    -Solve the nodal equation of the equivalent circuit that 
represents the whole grounding system based on Kirchoff's 
laws. 
    Meliopoulos used frequency independent parameters, such 
as self and mutual inductance (ΔL), capacitance (ΔC), 
conductance (ΔG) and internal resistance (ΔR) of each 
segment. Later, Ramamoorty et al. [7] developed a simplified 
circuit approach for the grounding grid. In their approach, 
each segment was only represented by a lumped circuit with 
self and mutual inductance (ΔL) and self earth leakage 
conductance (ΔG). Even though this model neglected the 
capacitive coupling and internal resistance, it is still 
reasonably accurate in low resistivity soils. 
     Circuit approach is easy to understand, can easy 
incorporate the non-linear soil ionisation phenomena, can 
include all the mutual coupling between the grounding wires. 
The main drawback of this approach is that it cannot predict 
the surge propagation delay. 

C.  Electromagnetic field approach  

Electromagnetic field approach is the most rigorous 
method for modeling the transient behaviour of grounding 
systems, because it solves full Maxwell’s equations with 
minimum approximations. This approach can be implemented 
either by: 

- Method of Moment (MoM);  
- Finite Elements Method (FEM). 

The model for the transient behaviour of grounding system 
based on MoM was first developed by Grcev et al. [8-11]. 
This model aims to transform the associated electric field 
Maxwell’s equations to a system of linear algebraic equations 
with minimum assumptions. However, this model is too 
complex to be implemented. Further, when the grounding 
structure is large, the computation time is very large. Another 
disadvantage of electromagnetic field approach is that, 
because of its frequency domain solution procedure, it cannot 
be easily modified to include non-linearity due to soil 
ionization. 
      The electromagnetic field approach for the transient 
analysis of grounding systems based on FEM was developed 
by Biro et Preis [12] and Nekhoul et al. [13-14]. This model 
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starts from electric or magnetic energy equation, which 
involves partial differential Maxwell’s equations.  
 The difficulty in this approach is to transform the open 
boundaries of both air and earth environment into a closed 
boundary problem using spatial transformation [15], which 
will reduce the size of the problem. The main advantage of 
this electromagnetic field approach based on FEM is that the 
descritization of the domain (geometry of the medium) of the 
problem can be highly flexible non-uniform patches or 
elements that can easily describe complex shapes. That is the 
reason why the soil ionization can be easily included into this 
model. However, this method is more complicated to 
understand, because it is not directly solving the Maxwell’s 
equations. 

D.  Hybrid approach 

     Hybrid approach for the transient analysis of grounding 
system was first initiated by Dawalibi [16-17]. This model is 
the combination of both electromagnetic field approach and 
circuit approach. This approach was later modified by 
Andolfato et al. [18]. In this method, the methodology is to 
divide the whole grounding system into "n" small segments. 
The electric field at any point is given by:      
This equation was derived from Maxwell's equations, A is the 
vector potential and V is scalar potential.  
    This method includes the frequency influence on series 
internal impedances, inductive components and capacitive-
inductive components which makes this method more accurate 
than the conventional circuit approach, especially when the 
injection source frequency is high. 

E.  Our approach 

      In this work, we propose a new hybrid approach [19-20], 
where three methods are summarized; analytical formula for 
determining electromagnetic fields radiated by electrical 
dipole in infinite conductive medium, modified images theory 
for taking in account the interface in the half space instead 
Sommerfeld’s integrals, and transmission line theory for 
determining the longitudinal and leakage current. 
     In infinite medium, the total electromagnetic fields are the 
sum of the contributions from each dipole. In semi infinite 
medium, two cases can be considered, the first case is the 
current source (dipole) and observation point in the same 
medium, the electromagnetic fields can be evaluated as a sum 
of the field of the current source and its image; the second case 
is the current source in medium.1 and observation point in 
medium.2, the electromagnetic fields can be evaluated as the 
field due only to the modified current source. 
    Our method can be either in time and in frequency domain, 
it’s very easy to understand, reasonably accurate and time 
efficient.  

II. EXACT EXPRESSIONS OF MAGNETIC FIELD IN A 
CONDUCTING MEDIUM  

 Let us consider an electric dipole of length (∆l) immersed 
in a conducting medium characterized by constitutive 
constants: conductivity (σ), permeability (μ ), and permittivity 
( ε ), and excited by an impulse current. 

 When the dipole is located in the origin of a Cartesian 
coordinate system, and oriented in the z direction, the vector 
potential in the frequency domain is as follows: 
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Fig.1. Electric dipole in conducting medium 

 From the tables of Laplace transforms [21], the inverse 
transformer of   re  γ−  is as follows: 
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     ( ) vrt −δ  is the Dirac function;            

      ( )vrtu −  is the Heaviside step function;  
                         I1 (m) is the first order modified Bessel function. 

     We also define the attenuation constant, the wave velocity 
and the relaxation time, respectively: 

                    σετεμεμσα === 0      and      1     , v  

      Using equation (3), we take the expression of potential 
vector in time domain: 
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We take the magnetic field components in the time domain: 
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                     I2 (m) is the second order modified Bessel function. 

 The expressions given in equations (6) and (7) are 
considered exact because up to here, no approximation has 
been made. 

III. MODIFIED IMAGES THEORY  

         In the semi-infinite medium, the interface is taken into 
account using modified images theory. This method was 
developed by Takashima et al. [22], to calculate the complex 
field in conducting media; the authors show that there exist 
dual relationships between a complex field due to an 
alternating current source in a conducting medium and an 
electrostatic field due to a charge in a dielectric medium.  

A.  Homogeneous conducting medium 

    The complex field at "M", due to an alternating current 
point source, located in a homogeneous medium with 
conductivity (σ) and permittivity (ε), as show in Fig.2 is given 
by equation (10). 
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Fig.2. Alternating current in homogeneous medium 
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 And the potential at point "M" is given by equation (11). 
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B. Semi infinite medium  

        Let us consider two conducting mediums (σ1, ε1), (σ2, ε2) 
and an alternating current point source located in medium.1, at 
a distance "h" from a plane separating boundary, as show in 
Fig.3. The method of images replaces the semi-infinite 
medium (two mediums) by only observation point medium.  

   
 
 
 
 

 
 
 
 
 

Fig.3. Two conducting mediums 

      In medium.1 the potential at point "M" (Fig.4), can be 
evaluated as sum of the current source I and its image I’ 
(equation 12), the current source image is placed at a distance 
“h” from separating boundary. 
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      In medium.2 the potential at point M’ (Fig.5), can be 
evaluated as potential due to the modified current source I”, it 
given by equation (13). 
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Fig.4. The current source I and its image I' 
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Fig.5. Modified current source I” 

     To determine I’ and I” the following boundary conditions 
must hold. On the boundary plane (x=0). 

                                 21 VV =                                (14) 

And 

( ) ( )
xx

V
j

V
j

∂
∂=

∂
∂

++ 2
22

1
11 ωεσωεσ         (15) 

     From equations (11) to (15), we have  
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    The dual relationships can be used to calculate complex 
fields in more complicated configurations. For buried grid 
(current source in soil), two cases can be considered for the 
position of the observation point. 

C. Current source and observation point in soil 

     The semi infinite medium, soil and air (Fig.6.a) is replaced 
by observation point medium, soil in this case (Fig.6.b), and 
electromagnetic fields can be evaluated as a sum of the field of 
the current source and its image I’ as follows: 
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Fig.6. a) Configuration of media and source. 
b) Images representing the field in soil 
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D. Current source in soil and observation point in air 

 The semi infinite medium, soil and air (Fig.7.a) is replaced 
by observation point medium, air in this case (Fig.7.b), and the 
electromagnetic fields can be evaluated as the field due to the 
modified current source (I’’): 
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Fig.7. a) Configuration of media and source. 
         b) Images representing the field in air 

IV. LONGITUDINAL AND LEAKAGE CURRENTS  

 The transmission lines approach for the transient analysis 
of buried grid based on FDTD method was developed by 
Nekhoul & al. [23]. 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

Fig.8. Buried grid 

 To determine the longitudinal and leakage currents in the 
ground conductor, we propose the direct resolution of the 
propagation equation in time domain, by the finite differences 
time domain method (FDTD). 
 Transmission line equations in potential and current in 
time domain for one dimension are given by: 
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R, L, C and G are the per unit length parameters of the buried 
conductor [24]. 
 The propagation equation is obtained by combination of 
two equations in system (21)  
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    The partial derivatives can be approximated by finite 
differences at point of coordinates (i, j, n), the subscripts i, j, 
and n, are respectively associated to variables x, y, and time. 
Substituting the partial derivatives by their approximations 
into equation (22), we obtain: 
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    By writing this equation on all points of the buried grid, we 
can generate the following linear matrix equation. 

              [ ][ ] [ ]BUA =                                (24) 

 The resolution of this system gives the node voltage on the 
buried grid. This resolution requires the knowledge of suitable 
conditions in extremities of the grid. Then, the voltage at the 
injection point and at the extremities (on borders of the grid) 
must be fixed. 
 Once the transient voltages responses are computed, the 
currents in different branches of grounding grid are obtained 
by numerical integration of the following current line 
equation: 
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V. COMPUTATION PROCEDURE 

    Computation results are obtained as follows:  
   -The resolution of the system (24) gives the node voltage on 
the grid;  
   -The currents in different branches (dipoles) of grounding 
grid are obtained by numerical integration of the current line 
equation (25); 
    -Once the transient currents I(t) responses  are computed, 
we use the following syntaxes for determining the modified 
current source I"(t) and current source image I'(t) for each 
dipole, were FFT,  IFFT are Fast Fourier Transform and 
Inverse Fast Fourier Transform respectively. 

   Using the current distribution, the components in time 
domain of radiated magnetic field are calculated by analytical 
formula (equations 6 and 7) for each dipole. The total radiated 
magnetic field is the sum of the contributions from each 
constituent dipoles. 

        
 VI. APPLICATION AND VALIDATION 

 For analysis we take the same example treated by Grcev et 
al.[10], a 60 m by 60 m square ground grid with 10 m by 10 m 
meshes, made of copper conductor with 1.4 cm diameter, and 
buried at a depth of 0.5 m under the earth’s surface. The soil is 
assumed to be homogenous with a resistivity 1000 Ωm, a 
relative permittivity 9 and a relative permeability 1. 
 In the following applications, we use the typical double 
exponential lightning current impulse given by: 
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A. Injection at the corner point of the grid 

 In the first application, the lightning stroke is fed at the 
corner point of the grid (Fig.9). The profile.1  is directly above 
the interface from (0,-5, 0.5) to (0, 65, 0.5). 
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Fig.9. Grid under the interface and profile.1 

    Fig.10 illustrates the magnetic field along profile.1 (70 m) 
at the soil surface, parallel to and centred on the conductor, as 
depicted on Fig. 9, at t =10 μs.  
    Fig.11 shows the spatial distribution form 3D of the 
magnetic field, to remote ground at the soil surface (70m x 
70m) parallel to and centred on the grid, at t =10 μs. 
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Fig.10. Magnetic field along profile.1 (t=10μs) 

 

Fig.11. Magnetic field 3D (t=10μs) 

B. Injection at the middle point of the grid  

     In the second application, the lightning stroke is fed at the 
middle point of the grid.  The profile.2  is directly above the 
interface from (30,-5, 0.5) to (30, 65, 0.5). 
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Fig.12. Grid under the interface and profile.2 
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Fig.13. Magnetic field along profile.1 (t=10μs) 

 

Fig.14. Magnetic field 3D (t=10μs) middle injection 

      Fig.13 illustrates the magnetic field along profile.2 (70 m) 
at the soil surface parallel to and centred  on the conductor, as 
depicted on Fig.12, at t =10 μs. 
     Fig.14 shows the spatial distribution form 3D of the 
magnetic field to remote ground at the soil surface (70 m x 
70m) parallel to and centred on the grid, at t =10 μs. 
 Presented results show large differences of the magnetic 
field to remote ground between points at the interface. High 
values of the magnetic field occur near the injecting point and 
are further spreading toward the rest of the ground surface 
while the values are decreasing.  
 The different locations of feed point are shown in figures 9 
and 12. The curves in figures 10 and 13 compare the 
magnitude of magnetic field, for the feed point at one corner 
and the center of the grid with the same current injection. 
 For the same grounding grid, the maximal magnitude of 
magnetic field, for feed point at the center is much smaller 
than that for feed point at the corner. The location of feed 
point at the center is strongly recommended, instead of at the 
corner. 
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