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Abstract: In mobile networks, one of the hard tasks is to 

determine the best partitioning in the Location Area problem, 
but it is also an important strategy to try to reduce all the 
involved management costs. In this paper we present a new 
approach to solve the location management problem based on the 
Location Area partitioning, as a cost optimization problem. We 
use a Differential Evolution based algorithm to find the best 
configuration to the Location Areas in a mobile network. We try 
to find the best values for the Differential Evolution parameters 
as well as define the scheme that enables us to obtain better 
results, when compared to classical strategies and to other 
authors’ results. To obtain the best solution we develop four 
distinct experiments, each one applied to one Differential 
Evolution parameter. This is a new approach to this problem that 
has given us good results. 

  Index terms: Differential Evolution, Location Area problem, 
location management, mobile networks 
 

I. INTRODUCTION 
 

Personal communication networks (PCN) [1] have a digital 
communication system that enables any user to make or 
receive calls from any location and at any time of the day. For 
that, the system must support the mobility of the users as well 
as be able to find the users even when they change their 
location. 

Because communication networks must support a big 
number of users, and their applications, as well as a wide 
range of data transfers, the task of designing the infrastructure 
of these networks must consider, as a very important point, the 
mobility management. Mobility management involves the 
process of location management that enables the mobile 
network to find the current location of the mobile terminal in 
order to make or receive calls, and the process of handoff 
management that enables the mobile network to locate 
roaming mobile terminals.  

We are principally concerned about the mobility 
management because their requests normally occur when a 
mobile terminal changes its location or when the quality of the  
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 received signal becomes deteriorated, so this process becomes 
even more important for the current and future generations of 
mobile networks. 

Location management involves two elementary operations: 
location update and location inquiry (or terminal paging). The 
location update corresponds to the notification of current 
location, performed by mobile terminals when they change 
their location in the network. The location inquiry is the 
operation of determining the location of the mobile terminal, 
which is executed by the network when it tries to direct an 
incoming call to the user. 

Location management strategies may be divided into two 
main categories: static and dynamic schemes. The static 
schemes consider the same behaviour of the network for all 
users, while the dynamic schemes consider different network 
topologies for different users based on the individual user’s 
call and mobility patterns. Unlike dynamic schemes that are 
more complex, static schemes are more common in the actual 
mobile networks, because they require less computational 
effort. A survey of different dynamic techniques based on 
users’ behaviour such as timer-based, distance-based, 
movement-based (among others) may be seen in [2]. As static 
techniques, the most common ones are always-update, never-
update, and location area schemes [2], among others. 

Always-update and never-update are the two simple 
location management strategies. In the always-update strategy, 
each mobile terminal performs a location update every time it 
enters on a new cell, but no search operation would be 
required for incoming calls, because it is considered that all 
cells have different location areas. For the never-update 
strategy no location update is performed but, when there is an 
incoming call, a search operation is executed with the 
objective of finding the corresponding user; because all cells 
are considered as belonging to the same location area. 
Normally these two strategies correspond to the extremes of 
location management strategies and for that, most of existing 
network systems use a combination of them. One of the most 
common location management strategies in the existing 
systems is the Location Area scheme that is presented with 
more detail in the next section. 

There exist several authors working with the location area 
scheme and applying computationally efficient algorithms like 
genetic algorithms [3 - 5], simulated annealing [5, 6], taboo 
search [5] and clustering techniques [7] (among others). 

In this paper, a Differential Evolution based algorithm is 
used to find the best configuration for the location area 
scheme in a mobile network. Therefore, we present a new 
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approach to this problem. Section II provides an overview of 
the location area problem and the involved costs. In section 
III, the Differential Evolution based algorithm is described, as 
well as its parameters and different possible schemes. In 
section IV, the experimental results of the four specific 
experiments are presented and an analysis over the obtained 
results is done with the intent of defining the best Differential 
Evolution parameters configuration. Finally, section V 
includes conclusions and future work. 
 

II. LOCATION AREA PROBLEM 
 

In cellular network systems it is very important to keep 
track of the location of the users, even when they move 
around without making or receiving calls, so as to 
consequently, be able to route calls to the users regardless of 
their location. 

Location Areas (LA) scheme corresponds to an important 
strategy of location management, that is used with the 
objective of reducing signalling traffic caused by paging 
messages and location updates in cellular network systems. 

In the LA scheme, the network is partitioned into groups of 
cells and each group corresponds to a region, or more 
precisely to a LA, as we can see in Fig. 1, where we have a 
network with four LAs and each with four cells. In this 
scheme, when a mobile terminal moves to a new LA, its 
location is updated, which means a location update is 
performed. When the user receives an incoming call, the 
network must page all the cells of the new LA of the user, 
looking for its mobile terminal. 

 
Fig. 1. Network Partitioning into Location Areas 

 
The LA problem can be defined as the problem of finding 

an optimal configuration of location areas, minimizing the 
location management cost. The location management cost 
normally is divided in two main parts: location update cost 
and location paging cost [3, 4]. 
 
A. Location Update Cost 
 

The location update (LU) cost corresponds to the cost 
involved with the location updates performed by mobile 
terminals in the network, when they change their location to 
another LA. Because of that, the number of location updates is 
normally caused by the user movements in the network. This 
means that, when we calculate the update cost for a certain 
LA, we must consider the entire network and look for the flow 
of users. 

If we consider the network of Fig. 2a, it is possible to see 
the total number of users who enter in the white LA. To 

calculate the location update cost for that LA, we must sum up 
those numbers of users that enter (from another LA) on each 
cell of the LA and the calculus is: 

 
469586384734241108 =++++++=NLU     (1) 

 
 
 
 
 
 
 
 

    (a)            (b) 
 

 Fig. 2. a) Entering flow of users b) Incoming calls to the white LA  
 
B. Location Paging Cost 
 

The location paging (P) cost is caused by the network when 
it tries to locate a user’s mobile terminal, during the location 
inquiry, and normally the number of paging transactions is 
directly related to the number of incoming calls. The task of 
calculating the paging cost is simpler, because we only need to 
count the number of incoming calls in the selected LA and 
then multiply the value by the number of cells in the 
respective LA. Considering the incoming calls to the white LA 
shown in Fig. 2b, the calculus of paging cost is: 

( ) 736430585343 =×+++=NP            (2) 
 
C. Total Cost 
 

The location management cost involves other parameters 
and components, but those are considered to be equal for all 
strategies [4]. Therefore, these other parameters do not 
influence the comparison of different strategies, and we will 
not consider them for the total cost. In conclusion, the 
combination of location update cost and location paging cost 
is sufficient to compare different strategy results. 

The formula to calculate the total cost of location 
management [8] is: 

NPNLUCost +×= β            (3) 
The total cost of location updates is given by NLU, the total 

cost of paging transactions is given by NP, and finally β is a 
ratio constant used in a location update relatively to a paging 
transaction in the network. The cost of each location update is 
considered to be much higher than the cost of each paging 
transaction, due to the complex process that must be executed 
for each location update performed, and also because most of 
the time a mobile user moves without making any call [4]. 
Due to all of that, the cost of a location update is normally 
considered to be 10 times greater than the cost of paging, that 
is, β =10 [3]. 

For the white LA referred earlier, and presented in Fig. 2a 
and 2b, the total cost by (3) would be: 

542673646910 =+×=Cost           (4) 
To calculate the total cost of the network with the 

configuration defined, which means with four LAs, would be 

 

 

x

 

53

30

43

58

 
42 
41 

63 
  58 

84 
73 

108 

132 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 4, NO. 2, JUNE 2008



necessary to make the calculus for each LA and then sum all 
the values and get the final total cost. 
 

III. DIFFERENTIAL EVOLUTION ALGORITHM 
 

The Differential Evolution (DE) is a population-based 
algorithm, created by Ken Price and Rainer Storn [9], whose 
main objective is functions optimization. It is one strategy 
based on evolutionary algorithms with some specific 
characteristics. 

The DE algorithm’s main strategy is to generate new 
individuals by calculating vector differences between other 
randomly-selected individuals of the population. This 
algorithm uses four important parameters: population size, 
mutation, crossover and selection operators; there are different 
variants. 
 
A. Initial Population 
 

Like other Evolutionary Algorithms, DE works with a 
population of NI individuals (candidate solutions) and this 
number never changes during the optimization process. 
Normally the initial population is randomly generated and the 
population will be improved by the algorithm iteratively, 
through the mutation, crossover and selection operators (in 
[10] is possible to see more details about the DE flowchart). 
 
B. Mutation Operator 
 

The mutant operator F is a scaling factor that controls the 
amplitude of the differential variation of those random 
individuals used in the calculi. 

With this operator DE generates a mutant individual (Ii, g+1), 
by adding a weighted difference of two population 
individuals, to a third individual using the equation (5): 

( )ggggi XXFXI ,3,2,11, −+=+
          (5) 

The value of F must be greater than zero and will control 
the magnitude of the differential variation of (X2, g - X3, g). The 
individuals X1, X2 and X3 are randomly selected and different 
among them. The g means the actual generation and g+1 
means the next generation. DE uses a weighted difference 
between individuals to perturb the population in each 
generation, instead of randomly define the quantity of 
perturbations in the generation of a new individual as the most 
of other Evolutionary Algorithms do. 
 
C. Crossover Operator 
 

Crossover operator Cr is a value between zero and one, 
which is used to increase the diversity of mutant individuals. 
This constant represents the probability of trial individual 
inherits parameter values from the mutant individual. 

Mutant individual and target individual are subjected to 
crossover to generate the trial individual (T i, g+1), as displayed 
in the following equation (6): 

⎪⎩
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where j= 1, 2, … G. G corresponds to the number of genes 
of an individual and rn corresponds to the random value 
generated. 
 
D. Selection Operator  
 

Selection has the purpose of comparing the trial individual 
(offspring) produced by the crossover operator with the target 
individual (parent) and it determines the one that will be part 
of next generation. If a trial individual has a smaller cost 
function value it is copied to the next generation, otherwise it 
is the target individual that passes to the next generation, as it 
is possible to see in equation (7): 

        ( ) ( )
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E. DE Schemes   
 

Price and Storn [9] have suggested 10 different schemes 
(those are presented in Table I) for DE. These schemes are 
classified based on notation DE/x/y/z, where x specifies the 
vector to be mutated, y corresponds to the number of 
difference vectors used in mutation of x (normally 1 or 2) and 
z represents the crossover scheme. The vector x may be 
chosen randomly (‘rand’) or as the best of current population 
(‘best’), and z may be binomial (‘bin’) or exponential (‘exp’) 
depending of the type of crossover used. 
 

TABLE  I 
DE SCHEMES 

 

Nº Scheme Mutant vector generation 

1 DE/best/1/exp xbest + F(xr1 − xr2) 

2 DE/rand/1/exp xr3 + F(xr1 − xr2) 

3 DE/randtobest/1/exp xr3 + F1(xbest − xr3) + F2(xr1 − xr2) 

4 DE/best/2/exp xbest + F(xr1 + xr2 − xr3 − xr4) 

5 DE/rand/2/exp xr5 + F(xr1 + xr2 − xr3 − xr4) 

6 DE/best/1/bin xbest + F(xr1 − xr2) 

7 DE/rand/1/bin xr3 + F(xr1 − xr2) 

8 DE/randtobest/1/bin xr3 + F1(xbest − xr3) + F2(xr1 − xr2) 

9 DE/best/2/bin xbest + F(xr1 + xr2 − xr3 − xr4) 

10 DE/rand/2/bin xr5 + F(xr1 + xr2 − xr3 − xr4) 

 
IV. EXPERIMENTAL RESULTS 

 
In this section, we detail the source and preparation of the 

test networks, subsequently we explain the most relevant 
decisions and choices made in our algorithm implementation, 
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then we expose our different experiments and finally we 
present our results. 
 
A. Test Networks Generation 
 

There are several studies about other approaches for the LA 
problem, but unfortunately, most of them do not present the 
network data used for their implementation. 
 

TABLE  II 
TEST NETWORK 5X5 ATTRIBUTES 

 

 
 
 
 

TABLE  III 
TEST NETWORK 5X7 ATTRIBUTES 

 

 

In order to compare results we will use the same test 
networks of Taheri and Zomaya in [4, 6]. Each of these 
networks has a set of data for each cell, as presented in Table 
2 for the 5x5 network from [6]. The first column represents 
the cell identification, the second is the number of total 
updates that each cell may have, the third one means the 
number of calls received in each cell and the fourth 
corresponds to the number of updates to be considered by 
each cell whose neighbours change their LAs to the same one. 
In this work we use four distinct networks with respective 
sizes of 5x5 (see Table II), 5x7 (see Table III), 7x7 (see Table 
IV) and 7x9 (see Table V) cells from [4, 6], with the objective 
of test the performance of DE approach applied to networks 
with distinct sizes. 
 

TABLE  IV 
TEST NETWORK 7X7 ATTRIBUTES 

 

 
 
B. Parameters Definition 
 

The DE algorithm starts with the definition of an initial 
population of candidate solutions (individuals). Each 
individual represents a possible configuration of the network 
and is composed of N genes, where the N corresponds to the 
number of cells in the network. Each gene of the individual 
represents the number of the LA where the cell belongs to. 
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To define the initial population we assumed, as in other 
works [4], that there are only two LAs, and one of them is set 
to each cell with a probability of 50%. After that we have 
adjusted the parameters value to the ones indicated to each 
experiment. 
 
 

TABLE  V 
TEST NETWORK 7X9 ATTRIBUTES 

 

 

C. Algorithm Implementation 
 

After the initial population is defined, the algorithm 
proceeds to manipulate the population until a termination 
condition is reached. 

Below we present the outline of the implemented algorithm, 
with the scheme DE/best/1/exp. In our implementation we will 
use the ten DE schemes and observe how each of them 
influence the possibility of obtain the better results, after being 
defined the best value to each DE parameter. The 
DE/best/1/exp uses the best individual at the moment, and an 
exponential crossover: 

1. Initialize the population 
2. Validate the initial population 
3. Evaluate the initial population 
4. While termination condition is not satisfied, create 

next population where each individual (candidate solution) 
is generated according to: 

a)  Randomly select 2 distinct individuals xr1 and xr2 
from the population, but different from xbest 

b) Generate a trial individual based on the formula: 
xtrial = xbest + F(xr1 – xr2) 

c)  Use the probability Cr to define the amount of 
genes changed in trial individual 

d) Validate the trial individual 
e)  Evaluate the trial individual 

 
Here the terminal condition will be the number of 

generations defined by the value 1000, because running the 
algorithm for unlimited number of generations is not a good 
choice for DE. 
 
D. Individuals Validation 
 

When an individual is generated we must consider that an 
invalid configuration network may be created. This is because 
with the application of the algorithm it is possible that we 
have scattered LAs. This means that we may have cells 
attributed to the same LA in distinct places of the network, as 
shown in Fig. 3, but in reality that is not possible and we must 
correct or discard the individual.  

 

 
Fig. 3. Scattered LA (LA 2) 

 
To solve this problem we created a method to split these 

scattered LAs into small ones. Then we applied another 
method to merge LAs, with the purpose of not having only 
one cell belonging to a LA, when all their neighbour cells 
belong to different LAs. Finally, after this, we must renumber 
the LAs because during all the process some LA numbers may 
have been deleted. 
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This process must be repeated for all the individuals that are 
generated, to assure that the final solution will be a valid one. 
 
E. Fitness Function 
 

In our approach the fitness function corresponds to the 
calculus of the total cost of location management, which is 
defined according to the equation (3) presented in section 2.3. 
This means that for each individual generated (composed of a 
number of LAs), we will calculate its fitness value, which 
corresponds to the sum of the total cost of each of those LAs. 
 
F. Simulation Results and Analysis 
 

In order to compare results, the values of always-update and 
never-update strategies were calculated for all the four test 
networks. 

Then, with the objective of study in more detail the best 
configuration of DE, we have executed four distinct 
experiments. For each experiment, and for every combination 
of parameters, 30 independent runs have been performed in 
order to assure its statistical relevance. Due to the complexity 
of the problem, but with the objective of taking the best 
conclusions, we chose networks from small to medium size to 
validate our approach. 

Like other authors, as Taheri and Zomaya [4, 6], in this 
study, four distinct test networks are used to ensure the 
reliability of results. The fact that the results are similar to 
those test networks (existing networks of different sizes) 
ensures that the best configuration of parameters can be 
generalized to any network. 
 
F.1 Experiment 1 – Defining the best NI 
 

The first experiment has the intent of defining the best NI 
value (which means, define the best population size). So, for 
that we have fixed the values of F to 0.5, Cr to 0.1, DE 
strategy as DE/rand/1/bin and the number of generations to 

1000, from earlier experiments that we have executed [11, 
12]. Then we have initialized the size of NI with 10 and 
changing it up to 100 with the values 25, 50 and 75. 

After this we observed that until now the average of fitness 
values always presents a positive evolution, so because of that 
we decided to proceed increasing NI. Considering the results 
obtained to the best and average fitness values and observing 
the evolution tendency we have seen that the best value to NI 
is 250 (as it is possible to see in Table VI) because, although 
the values between 275 and 400 have been experimented, their 
results were worse and the evolution of the average fitness 
became negative. 

In order to allow a quick analysis over the best results it 
was used, in the tables of results, the red colour to mark the 
best fitness values, one yellow mark to the best average fitness 
values and one blue mark for the minimum standard deviation 
values. 

With this experiment we have concluded that after a NI 
value bigger than 250 the positive evolution of the results stop 
or decrease, in such a way that there are not clearly 
improvements. We also have to consider that growing the NI 
value has a direct implication in the increase of execution 
time. 

Due to all of this, we have chosen NI=250, to pass to the 
second experiment, as an equilibrium point for obtaining good 
results in small times of execution. 
 
F.2 Experiment 2 – Defining the best Cr 
 

The second experiment has the objective of electing the Cr 
value that obtains the best results for all, or for the majority, of 
the test networks. 

To proceed with this experiment we initialized and fixed the 
values of NI to 250 (obtained from experiment 1), F to 0.5, 
DE scheme as DE/rand/1/bin and the number of generations to 
1000 (as defined in the experiment 1). 
 

 
 

TABLE  VI 
EXPERIMENT 1: DEFINING THE BEST NI  

 

NI 10 25 50 75 100 125 150 175 200 225 250 275 300
Best 27216 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990
Average 28992.7 27518.4 27281.4 27292.2 27264.7 27191.0 27148.6 27119.9 27119.5 27149.0 27100.9 27104.7 27062.6
St. Dev. 3358.5 311.5 216.7 172.8 134.3 140.5 147.8 139.1 123.6 110.8 119.6 110.7 103.3

Best 41458 40645 40754 40645 40328 40645 40645 40582 40582 40427 40256 40328 40328
Average 44493.7 42415.6 42188.1 42043.6 41638.6 41752.8 41542.3 41393.0 41385.9 41545.6 41313.1 41289.4 41016.0
St. Dev. 3268.9 1025.3 753.4 661.2 615.7 576.6 650.1 499.6 508.5 532.4 517.1 419.4 409.5

Best 65331 64362 65153 64879 64879 64674 64161 64732 64477 64433 65458 64043 63958
Average 71501.9 67907.9 67228.8 66830.5 66803.1 66443.1 66252.9 66166.3 66264.2 65996.5 66466.7 65657.9 65873.7
St. Dev. 9670.7 1036.0 775.5 972.1 828.6 984.1 853.0 634.0 762.3 830.9 623.2 851.6 693.7

Best 96277 95296 95969 97440 95246 95640 94304 96329 94908 95110 94293 94888 95080
Average 102158.6 100379.7 99699.3 99268.4 98848.2 98567.7 98511.7 98098.4 97800.3 97955.1 97686.8 97413.1 97589.5
St. Dev. 2110.1 1769.0 1288.6 989.0 1442.2 1405.5 1322.7 1183.6 1249.3 1396.3 1260.3 1244.1 1225.7

7x9 Network

Fitness Evaluation
5x5 Network

5x7 Network

7x7 Network
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TABLE  VII 

EXPERIMENT 2: DEFINING THE BEST CR  
 

CR 0.01 0.03 0.05 0.07 0.09 0.1 0.25 0.5 0.75 0.9
Best 26990 26990 26990 26990 26990 26990 26990 26990 26990 26990
Mean 27249.0 27277.3 27159.5 27145.8 27107.2 27070.6 27038.6 27090.4 27086.5 27136.1
St. Dev. 131.8 112.9 141.5 119.7 127.1 106.2 76.8 111.2 129.7 146.5

Best 40672 40645 40645 40645 40525 40301 40466 40301 41465 42219
Mean 41661.7 41552.2 41674.8 41763.8 41405.4 41188.6 41228.7 41398.2 42384.7 42616.6
St. Dev. 627.2 486.6 586.8 449.0 536.6 474.9 416.0 486.0 219.5 278.5

Best 64769 65030 64729 63815 63534 63874 64674 64305 67380 67232
Mean 66819.0 66739.1 66368.1 66185.7 66029.1 66057.7 65915.5 67396.8 68937.2 69361.9
St. Dev. 876.1 703.7 638.1 956.5 1041.1 974.6 621.4 1077.1 690.7 1246.8

Best 95487 93285 94402 95208 95565 95492 96979 97884 101417 103666
Mean 100178.8 98751.6 98362.5 98015.2 97943.1 97547.0 99332.5 103542.7 105689.5 105707.1
St. Dev. 1313.7 1730.6 1446.9 1064.6 1021.1 1015.4 920.7 2467.3 1779.6 988.0

7x9 Network

Fitness Evaluation
5x5 Network

5x7 Network

7x7 Network

 
 

 
With these fixed parameters, the experiment was executed 

initially with Cr equal to 0.1 and follow changing it to the 
values 0.25, 0.50, 0.75 and 0.9. After obtaining all the results, 
we could observe that, in the most of the cases, they became 
worse with the increase of the CR value. Until this moment it 
was possible to say that the best value was Cr=0.1, but to take 
more complete conclusions we decided to experiment lower 
values from 0.01 to 0.09. Finally, looking to all the results (see 
Table VII), it is possible to conclude that really Cr=0.1 is the 
best and more stable value to obtain better results. 
 
F.3 Experiment 3 – Defining the best F 
 

In the third experiment we pretend to define the best value 
of F, that allows us to obtain the best fitness values in the 
majority of the test networks or, if it is possible, to all the test 
networks. 

TABLE  VIII 
EXPERIMENT 3: DEFINING THE BEST F  

 

F 0.1 0.25 0.5 0.75 0.9
Best 26990 26990 26990 26990 26990
Mean 27080.6 27072.7 27141.8 27134.3 27078.4
St. Dev. 123.7 106.8 125.5 112.8 114.2

Best 40473 40466 40328 40496 40328
Mean 41491.0 41221.5 41194.3 41287.8 41266.3
St. Dev. 558.2 536.1 447.2 477.9 475.3

Best 64893 64893 64671 64879 64207
Mean 66051.2 66140.0 66192.1 65993.3 65981.9
St. Dev. 554.3 749.8 602.5 679.3 790.2

Best 96220 95076 93040 94774 95105
Mean 98116.6 97821.8 97826.5 97884.3 97849.8
St. Dev. 1022.6 1281.1 1402.2 925.5 1213.3

7x9 Network

Fitness Evaluation
5x5 Network

5x7 Network

7x7 Network

 

So, in order to execute this experiment we fixed the value 
of NI to 250 (from experiment 1), Cr to 0.1 (from experiment 
2), DE scheme as DE/rand/1/bin and 1000 generations as stop 
criterion (as defined in the two earlier experiments). The value 
of F was initialized to a probability of 0.1, and then the 
algorithm was also evaluated with the values of 0.25, 0.50, 
0.75 and 0.9.  

Observing the results obtained with this experiment, that are 
presented in Table VIII, it is possible to verify that, 
principally, the F values of 0.5 and 0.9 permit obtain better 
results. But F=0.5 was the elected one because it is the one 
that performs better when considering also the fitness average 
evolution. 
 

F.4 Experiment 4 – Defining the best DE scheme  
 

After the three earlier experiments we have obtained and 
fixed the best values for the DE parameters as NI=250, Cr=0.1 
and F=0.5. So in this last one we try to define what is the most 
appropriate scheme, that is, the DE scheme that permits to 
obtain the best results. For that, and again for each test 
network, the algorithm has been executed applying all the ten 
DE schemes. 

Once obtained all the results, we could conclude that the 
scheme DE/rand/1/bin is the one that performs better (see 
Table IX), and that permits to obtain the best fitness value in 
three of the four test networks. 

Finishing these four experiments we had defined the best 
DE configuration, applied to the Location Areas problem, 
setting the parameters as NI=250, Cr=0.1, F=0.5 and DE 
scheme as DE/rand/1/bin. 
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TABLE  IX 
EXPERIMENT 4: DEFINING THE BEST DE SCHEME  

 

Scheme Best1 Rand1 RandToBest1 Best2 Rand2 Best1 Rand1 RandToBest1 Best2 Rand2
Best 27282 26990 27048 27211 27211 27048 26990 27048 26990 26990
Mean 27871.2 27620.4 27946.3 27784.2 27572.8 27304.9 27077.8 27420.6 27291.4 27102.7
St. Dev. 305.0 297.3 395.9 354.6 295.9 132.9 111.4 255.5 169.4 125.6

Best 41141 41141 40722 40722 41340 40706 40205 40645 40346 40525
Mean 42772.1 42499.1 42853.6 42497.0 42542.5 41692.0 41261.8 41917.4 41627.5 41351.4
St. Dev. 987.1 1010.5 1136.6 794.4 927.9 400.8 562.2 676.1 600.4 387.2

Best 66215 65281 66243 65188 65658 64625 63307 64890 64560 65290
Mean 67709.3 67510.0 68417.0 67708.2 67367.4 66366.3 65737.1 66976.2 66247.6 66273.2
St. Dev. 1093.5 1330.8 1276.8 1399.4 1126.5 828.3 854.2 893.7 790.7 520.6

Best 100386 100484 98967 99512 100295 95125 94841 96408 92900 94483
Mean 102580.6 103191.6 103152.4 103199.8 103100.8 97947.5 97895.1 98346.4 97479.8 97598.4
St. Dev. 1166.4 1212.2 1643.1 1751.7 1213.0 996.4 1275.4 945.2 1408.7 1285.8

5x7 Network

7x7 Network

7x9 Network

Fitness Evaluation
5x5 Network

Exponential Crossover Binomial Crossover
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d) 

 
Fig. 4. Comparison Results a) 5x5 Network b) 5x7 Network c) 7x7 Network d) 7x9 Network  

 
 
F.5 Comparing our results with other applied algorithms  
 

Now, if we compare our results with the classical strategies 
always-update and never-update we may say that, for all the 
used test networks, our approach always obtains better 
solutions (lower fitness values) as it is possible to see in Fig. 
4. 

Comparing with studies of other authors, as Taheri and 
Zomaya [4, 6, 13], that use respectively genetic algorithms, 
simulated annealing and hopfield neural network approaches, 
our results are very similar and in some cases even better.  

For example, for the 5x5 network, our best fitness solution 
corresponds to a cost of 26990 and their best result is between 
25000 and 30000. Using the 5x7 network, our best fitness 
solution represents a cost of 40205 and their results are 
between 40000 and 45000. In the 7x7 network our lower cost 
is 63307 and their best value is between 60000 and 65000. 
Finally, for the 7x9 network the best fitness value obtained by 
our approach is 92900 and their best solution is between 
90000 and 95000. 

All of these costs were calculated with the network 
partitioning defined by the DE algorithm and represented in 
Fig. 5. 
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c)  d) 

Fig. 5. Best LAs Configuration a) 5x5 Network b) 5x7 Network c) 7x7 Network d) 7x9 Network  
 

With respect to the ideal number of location areas, we 
observed that, for the 5x5 network, all the best solutions 
correspond to a network partitioning in 3 Location Areas (see 
Fig. 5a). When we refer to the 5x7 network, the best solution 
corresponds to a partitioning in 4 distinct LAs (see Fig. 5b). 
Moving to the 7x7 network, the ideal partitioning is 
represented in 5 LAs (see Fig. 5c). For the bigger network, the 
7x9, the best configuration corresponds to a partitioning in 8 
LAs (see Fig. 5d). 

Relatively to the shape of the LAs, the most of them do not 
have a circular shape, as in the actual GSM systems. Their 
forms are diverse but principally of triangular or rectangular 
shape. 
 
F.6 The importance of the number of generations  
 

The DE algorithm is a population-based algorithm that 
improves its results generation by generation. Considering 
this, we may say that obtaining the best results depends on the 
number of generations defined as stop criterion. In this work, 
we always have used 1000 generations, because increasing it 
corresponds to increase the execution time. However, there 
are several works [4, 14] that present the results obtained with 
an “infinite” or very high number of iterations (generations). 
With the objective of compare our results with those ones, we 
decided to execute our approach for all the four tests networks 
using 5000 generations as stop criterion.  

In Table X is shown the evolution of results (best fitness 
value/lower cost for each test network) over the algorithm 
execution during the 5000 generations. It is possible to 
conclude that having more generations, permits to obtain 
better results. 

TABLE  X 
EVOLUTION OF RESULTS OVER 5000 GENERATIONS  

 
Test 

Network 

Generations 

1000 2000 3000 4000 5000 
5x5 26990 26990 26990 26990 26990 
5x7 40205 40117 40085 40085 39859 
7x7 63307 62720 61951 61567 61037 
7x9 92900 91104 90687 90437 89973 

Now, in Table XI we compare the new results with the ones 
presented by Taheri and Zomaya in [14], where “infinite” or 
very high number of iterations is used. We can observe that 

DE (with only 5000 iterations) always performs better than 
GA (Genetic Algorithm). If we compare with HNN (Hopfield 
Neural Network), SA (Simulated Annealing) or with the GA-
HNNx (different combinations of Genetic Algorithm and 
Hopfield Neural Network, see [14]), in the most of the cases 
the results are similar or even better. 

 
TABLE  XI 

COMPARISON OF NETWORK COSTS WITH DIFFERENT ALGORITHMS  
 

Test  
Network

Algorithm 

DE GA HNN SA 
GA-

HNN1 
GA-

HNN2 
GA-

HNN3 
5x5 26990 28299 27249 26990 26990 26990 26990 
5x7 39859 40085 39832 42750 40117 39832 39832 
7x7 61037 61938 63516 60694 62916 62253 60696 
7x9 89973 90318 92493 90506 92659 91916 91819 

 
Considering these results we may say that if our algorithm 

runs using endless generations, it would probably overcome 
the remaining results obtained by the other methods. 
 

 
V. CONCLUSIONS AND FUTURE WORK 

 
This paper presents a new approach based on DE algorithm 

with the objective of finding the best configuration for the 
LAs in a mobile network. It also intends to understand the 
influence of DE parameters and schemes. One of the principal 
characteristics of using DE algorithm is the fact that we 
always obtain (until the optimal solution is found) an equal or 
better individual in each generation. 

We have shown that our approach improves the results 
obtained with other classical location management strategies 
as always-update and never-update. 

When our implementation results are compared with the 
ones of other authors, it is possible to conclude that they are 
considered interesting because they are equal or better, when 
applied to the same test networks. We have studied in detail 
the best configuration of DE, and the best parameters, after a 
big number of experiments with four distinct networks, are NI 
of 250, Cr of 0.1, F of 0.5 and DE/rand/1/bin as the best 
scheme. It is also possible to conclude that in general the 
binomial schemes perform better than the exponential ones. 
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Each execution with the 5x5 test network took about 15 
seconds, with the 5x7 test network took about 25 seconds and 
with the 7x7 and 7x9 test networks took 35 and 40 seconds 
respectively. Considering the execution time for each test 
network, we may say that it is proportional to the network 
size, but also that those times are low and good to be used in 
industry. In total, to perform all the experiments (more than 
5000 independent runs), for this paper, around 90 hours were 
needed. 

As future work we have the intention of test our approach 
working with bigger test networks seeing if it works well or if 
the performance decreases. 

We have also planned to use real data (like SUMATRA 
[15]) as input for generating the test networks and then to 
apply our approach. 

The application of other evolutionary strategies to the LA 
problem and the comparison of their results with the ones 
accomplished by the DE algorithm are also a matter of future 
work. 

Finally, the formulation of the LA problem as a 
multiobjective optimization problem will be investigated as 
well. 
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