
Packet dropping characteristics in a queue with
autocorrelated arrivals

Andrzej Chydzinski, Robert Wojcicki, Grzegorz Hryn

Abstract— This paper provides a detailed description of the
packet dropping process connected with the buffer overflows
in a network node. Namely, we show the formulas for the
most important loss characteristics, both in the transient and
the stationary regime and then illustrate them via numerical
examples. In order to make it possible to obtain the dropping
characteristics for strongly autocorrelated arrivals, the Markov-
modulated Poisson process is used as a traffic model.

Index Terms— teletraffic modeling, finite-buffer queue, MMPP,
packet losses

I. I NTRODUCTION

Packet switched networks play today a prominent role
because they are resilient to breaks in network links, make
good use of bandwidth and are easier to deploy and maintain
than other networks. Packet dropping is common in packet
switched networks. It is caused by the limited buffering space
in network devices and can seriously influence the perfor-
mance of the network. Describing the packet loss process
is an important task as it enables better network design in
terms of buffer sizing and management, congestion control
mechanisms, protocols etc.

Calculations of packet loss characteristics can be carried
out using simulation or analysis. Both these approaches have
their advantages and disadvantages. For simulation we may
built a more accurate model but obtaining simulation results
is sometimes difficult (due to rare events) or time-consuming.

In this paper we present an analysis of the packet loss
process in a finite-buffer queue whose arrival process is
given by the Markov-modulated Poisson process (MMPP).
The MMPP was chosen due to its ability to mimic the
complex statistical behaviour of recorded traffic traces. As was
shown in [2], using the MMPP we can match not only the
basic parameters of the traffic (mean rate, variance, higher
moments) but also the shape of the marginal distribution and
the autocorrelation function.

The main achievement presented herein is a closed-form
formula for the transform of the average number of losses in
(0, t] interval. To the best of the authors’ knowledge, this result
is new. Using it we can easily obtain both the transient and
stationary number of packet losses as well as the loss ratio, a
commonly used QoS parameter.
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There is a vast amount of literature devoted to the applica-
tions of the MMPP [3]-[7], parameter fitting [2],[8]-[10] and
its queueing behaviour [11]-[15] (these are just examples, the
complete bibliography is much longer than that), but relatively
little has been reported regarding the loss process in a finite-
buffer queue fed by the MMPP. Typically, only the stationary
loss ratio was studied using exact and approximate techniques
[13], [16], [17].

The layout of this paper is as follows. The next section de-
scribes the arrival process, the queueing model and introduces
the notation used throughout the paper. The major part of the
paper (Section 3) then follows, presenting formulas for the
number of packet losses in the transient and stationary regimes
with proofs and comments. Section 4 then shows a numerical
example that uses the MMPP parameterization based on an IP
traffic trace file. The paper concludes in Section 5.

II. A RRIVAL PROCESS AND QUEUEING SYSTEM

The Markov-modulated Poisson process is constructed by
varying the arrival rate of the Poisson process according
to an m-state continuous-time Markov chain (for instance,
[12]). When the Markov chain is in statei, arrivals occur
according to a Poisson process of rateλi. The MMPP is
usually parametrized by twom × m matrices:Q and Λ. In
this parameterization,Q is the infinitesimal generator of the
continuous-time Markov chain andΛ is a diagonal matrix
that has arrival rates(λ1, . . . , λm) on its diagonal and zeroes
elsewhere.

The average rate of the MMPP can be calculated as

λ = π · (λ1, . . . , λm)T .

whereπ is the stationary vector forQ, namely

πQ = (0, . . . , 0),

π · 1 = 1,

and
1 = (1, . . . , 1)T .

Assuming that a packet arrival occurs att = 0 and denoting
by tn, n = 1, 2, . . . the packet arrival times, the interarrival
times

Tn = tn − tn−1,

have the following properties. The transform of the distribution
of T1 has the form:

Ee−sT1 = (sI −Q + Λ)−1Λ,
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while the joint transform ofT1, . . . , Tn:

E
[
exp

(
−

n∑

k=1

skTk

)]
=

n∏

k=1

[
(skI −Q + Λ)−1Λ

]
,

whereI denotesm×m identity matrix. Moreover, we have

ET i
k = i!

[
(Λ−Q)−1Λ

]k−1

(Λ−Q)−(i+1)Λ,

E(T1Tk+1) = (Λ−Q)−2Λ
[
(Λ−Q)−1Λ

]−(k+1)

(Λ−Q)−2Λ,

E[(T1 −ET1)(Tk+1 −ETk+1)]

= (Λ−Q)−2Λ
[
(Λ−Q)−1Λ

]k−1

[I − (Λ−Q)−1Λ](Λ−Q)2Λ.

The k-th moment of the interarrival time in the stationary
regime is equal to

mk(Ti) = k! p (Λ−Q)−(k+1)Λ · 1, p =
1
λ

πΛ.

In particular, the variance of the interarrival has the following
form:

V ar = m2(Ti)− 1
λ2

.

Finally, the k-lag autocovariance in the stationary regime
equals to

Cov(k) =p (Λ−Q)−2Λ
[
[(Λ−Q)−1Λ]k−1 − 1 p

]

· (Λ−Q)−2Λ 1.

By J(t) we will denote the state of the modulating Markov
chain at timet and byPi,j(n, t) the counting function for the
MMPP, namely

Pi,j(n, t) = P(N(t) = n, J(t) = j|N(0) = 0, J(0) = i),

whereP(·) is the probability andN(t) is the total number of
arrivals in (0, t]. Then, the generating function

P ∗(z, t) =
∞∑

n=0

P (n, t)zn

can be explicitly presented in the form:

P ∗(z, t) = e(Q−(1−z)Λ)t, |z| ≤ 1. (1)

In what follows, the crucial role will be played by the
sequences ofm×m matricesAk(s), Dk(s) defined as:

Ak(s) = [ak,i,j(s)]i,j ,

Dk(s) =
[
dk,i,j(s)

]
i,j

, (2)

where

ak,i,j(s) =
∫ ∞

0

e−stPi,j(k, t)dF (t),

dk,i,j(s) =
∫ ∞

0

e−stPi,j(k, t)(1− F (t))dt,

and F (t) is the service time distribution function. From the
practical point of view it is important thatAk(s) and Dk(s)
can be computed effectively by means of the well-known
uniformization method (see, for instance, [11], [18]).

Also, we will be using frequently the following matrix-form
characteristics of the MMPP:

Z(s) =
[
(λi −Qii)pij

s + λi −Qii

]

i,j

,

E(s) =
[

Λij

s + λi −Qii

]

i,j

,

where

pij =
{

0 if i = j,
Qij/(λi −Qii) if i 6= j,

(3)

and Qij , Λij denote elements of the matricesQ and Λ,
respectively.

Moreover, the followingm×m matrices will be of use:

0 = m×m matrix of zeroes,

An(s) =
∞∑

k=n

Ak(s),

Bn(s) = An+1(s)−An+1(s)(A0(s))−1,

R0(s) = 0,

R1(s) = A−1
0 (s),

Rk+1(s) = A−1
0 (s)(Rk(s)−

k∑

i=0

Ai+1(s)Rk−i(s)), k ≥ 1,

As for the queueing model, we deal herein with a single
server queue fed by an MMPP. The service time is distributed
according to a distribution functionF (·), which is not further
specified, and the standard independence assumptions are
made. The buffer size (system capacity) is finite and equal
to b (including service position). This means that if a packet
at its arrival finds the buffer full, it is blocked and lost. We
assume also that the time origin corresponds to a departure
epoch.

III. N UMBER OF LOSSES

Let X(t) denote the queue size at timet (including service
position, if occupied). LetL(t) be the number of losses in
(0, t] and ∆n,i(t) be its average value providedX(0) = n
andJ(0) = i, namely:

∆n,i(t) = E(L(t)|X(0) = n, J(0) = i).

Moreover, letδn,i(s) denote the Laplace transform of∆n,i(t)

δn,i(s) =
∫ ∞

0

e−st∆n,i(t)dt,

andδn(s) be the column vector:

δn(s) = (δn,1(s), . . . , δn,m(s))T .

Theorem 1:. The Laplace transform of the average number
of losses in(0, t] in the MMPP/G/1/b queue has the form:

δn(s) =
b−n∑

k=0

Rb−n−k(s)vk(s)

+

(
Rb−n+1(s)A0(s) +

b−n∑

k=0

Rb−n−k(s)Bk(s)

)
M−1

b (s)yb(s),

n = 0, . . . , b, (4)
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where

vk(s) = Ak+1(s)(A0(s))−1cb(s)− cb−k(s),

ck(s) =
1
s

∞∑

i=b−k

(i− b + k)Ai(s) · 1

+
∞∑

i=b−k

(i− b + k)Di(s) · 1,

yb(s) = E(s)
b−1∑

k=0

Rb−1−k(s)vk(s)

−(I − Z(s))
b∑

k=0

Rb−k(s)vk(s),

Mb(s) = (I − Z(s))[Rb+1(s)A0(s) +
b∑

k=0

Rb−k(s)Bk(s)]

−E(s)[Rb(s)A0(s) +
b−1∑

k=0

Rb−1−k(s)Bk(s)].

P r o o f of Theorem 1. Assuming1 ≤ X(0) ≤ b
and conditioning on the first departure time we obtain the
following system of integral equations forn = 1, . . . , b:

∆n,i(t) =
m∑

j=1

b−n−1∑

k=0

∫ t

0

∆n+k−1,j(t− u)Pi,j(k, u)dF (u)

+
m∑

j=1

∞∑

k=b−n

∫ t

0

(k − b + n + ∆b−1,j(t− u))Pi,j(k, u)dF (u)

+ (1− F (t))
m∑

j=1

∞∑

k=b−n

(k − b + n)Pi,j(k, t), (5)

The first summand in (5) corresponds to the case where the
first departure timeu is beforet and the buffer does not get full
by the timeu. This means that the number of arrivals in(0, u]
must not be greater thanb − n − 1. The second summand
corresponds to the case where the first departure timeu is
before t and the buffer gets full by the timeu. In this case
k ≥ b− n packets arrive in(0, u] andk − b + n of them are
lost. Finally, the last summand corresponds to the case where
the first departure time is aftert. Probability of this event is
equal to1 − F (t) and the average number of lost packets is
then equal to

∑m
j=1

∑∞
k=b−n(k − b + n)Pi,j(k, t).

If X(0) = 0 then conditioning on the first event time in the
MMPP (packet arrival or change of the modulating state) we
have:

∆0,i(t) =
m∑

j=1

∫ t

0

∆0,j(t− u)(λi −Qii)pije
−(λi−Qii)udu

+
m∑

j=1

∫ t

0

∆1,j(t− u)Λije
−(λi−Qii)udu. (6)

We may now apply the Laplace transform to both sides of
(5) and (6). After that, utilizing matrix notation we arrive at:

δn(s) =
b−n−1∑

k=0

Ak(s)δn+k−1(s)

+
∞∑

k=b−n

Ak(s)δb−1(s) + cn(s), n = 1, . . . , b,

(7)
δ0(s) = Z(s)δ0(s) + E(s)δ1(s). (8)

Then, substituting̃δn(s) = δb−n(s) we have:
n∑

k=−1

Ak+1(s)δ̃n−k(s)− δ̃n(s) = ψn(s), n = 0, . . . , b− 1,

(9)
δ̃b(s) = Z(s)δ̃b(s) + E(s)δ̃b−1(s), (10)

where

ψn(s) = An+1(s)δ̃0(s)−
∞∑

k=n+1

Ak(s)δ̃1(s)− cb−n(s).

Applying Lemma 3.2.1 [19] with slight change in notation we
conclude that the solution of the system (9) has the form:

δ̃n(s) = Rn+1(s)C(s) +
n∑

k=0

Rn−k(s)ψk(s), (11)

whereC(s) is a column vector that does not depend onn.
Now we are reduced to finding unknownC(s), δ̃0(s) and

δ̃1(s). Substitutingn = 0 in (11) we obtain

C(s) = A0(s)δ̃0(s), (12)

while substitutingn = 0 in (9) we have

δ̃0(s) =
∞∑

k=0

Ak(s)δ̃1(s) + cb(s). (13)

Substitutingn = b and, subsequently,n = b− 1 into (11) and
then applying condition (10) we obtain

δ̃0(s) = M−1
b (s)yb(s), (14)

and this finishes in fact the proof of Theorem 1. ¤

Applying Theorem 1 and using limiting properties of the
Laplace transform we can easily obtain stationary characteris-
tics of the loss process.

Corollary 1:. The stationary number of packet losses in time
unit (i.e. limt→∞∆n,i(t)/t) is equal to

lim
s→0+

s2δb,1(s), (15)

where δb,1(s) is the first element of vectorδb,1(s) given in
(4).

As the stationary characteristics do not depend on initial
state of the system, we can use any initial queue size and any
modulating state instead ofb and1 in formula (15). In practice,
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X(0) = b is the best choice as in this case (4) reduces to its
simplest form, namely:

δb(s) = M−1
b (s)yb(s).

Similarly, we can obtain the loss ratio (LR), a very popular
QoS parameter. We simply have:

LR = lim
s→0+

s2δb,1(s)
λ

. (16)

Naturally, using Theorem 1 we can also obtain the tran-
sient number of losses. To accomplish that, an algorithm for
the Laplace transform inversion has to be applied (see, for
example, [20]).

IV. EXAMPLE 1

In this example we will use the system parametrization from
[13]. The service time is constant and equal to 1 ms,b = 50,
and the MMPP parameters are given by:

Q =
[ −8.4733 · 10−4 8.4733 · 10−4

5.0201 · 10−6 −5.0201 · 10−6

]
,

(λ1, λ2) = (1.0722, 0.48976).

This parameterization has the following properties. The
stationary vector of the modulating Markov chain is:

π = (0.00589, 0.99411),

while the average rate of the traffic:

λ = π · (λ1, λ2)T = 0.49319.

This gives the link utilization of49.319%.
Now we can obtain numerical values. Firstly, using (16) we

can compute the stationary loss ratio:

LR = 5.7993 · 10−4

and the mean number of packet losses per 1ms:

λ · LR = 2.8602 · 10−4. (17)

Secondly, we can evaluate the impact of the initial queue
size and modulating phase on the short-time behaviour of the
loss process. In Fig. 1 the function∆n,i(t)/t, representing the
mean number of losses per time unit, is depicted for three
different initial queue sizes andi = 1. After about 50-100s all
the curves converge to the stationary value (2.8602 ·10−4), but
for high X(0) a very high number of losses may be observed
shortly after the system begins to operate.

In Figs. 2 and 3 the impact of the initial phase,i , on
the function∆n,i(t)/t, is shown for initially empty and full
buffer. As we can see, for the higher initial arrival rate(λ1),
the convergence to the steady state may be slow.

0 2 4 6 8 10
TIME @sD

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
E

A
N

N
U

M
B

E
R

O
F

L
O

S
S

E
S

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

Fig. 1. The mean number of losses per 1ms as a function of time for
J(0) = 1 and initial system occupancy of 0, 50% and 100%, counting from
the bottom. Example 1.
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Fig. 2. The mean number of losses per 1ms in as a function of time for
initially empty system and two different states of the modulating chain, i. e.
i = 1 and i = 2. Example 1.

V. EXAMPLE 2

In the second example we are going to use a parameteriza-
tion of MMPP fitted to aggregated IP traffic. Namely, using
one million packet headers from the file FRG-1137208198-
1.tsh, recorded on Jan 14th, 2006, at the Front Range GigaPOP
(FRG) aggregation point, run by PMA1, the following MMPP
parameters were fitted [21]:

Q=




−172.53 38.80 30.85 0.88 102.00
16.76 −883.26 97.52 398.9 370.08

281.48 445.97 −1594.49 410.98 456.06
23.61 205.74 58.49 −598.93 311.09

368.48 277.28 7.91 32.45 −686.12



,

(λ1, · · · , λ5)
= (59620.6, 113826.1, 7892.6, 123563.2, 55428.2).

1Passive Measurement and Analysis Project, see http://pma.nlanr.net/
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Fig. 3. The mean number of losses per 1ms in as a function of time for
initially full system and two different states of the modulating chain, i. e.
i = 1 and i = 2. Example 1.

Basic characteristics of the original sample and its MMPP
model are shown in Table I. It is important that the autocorre-
lation function properly matches the original sample on several
time scales (see Fig. 5 in [21]).

TABLE I
PARAMETERS OF THE ORIGINAL AND MMPP TRAFFIC IN EXAMPLE 2.

mean packet arrival rate,λ
interarr. time [µs] [packets/s]

original traffic 13.940 71732
MMPP 13.941 71729

It is assumed thatb = 120 and the queue is served at a
constant rate of 98689.5 pkts/s which gives the link utilization
of 72.7%.

Using (16) we obtain the stationary loss ratio:

LR = 1.1044 · 10−2,

and the mean number of packet losses per 1ms:

λ · LR = 0.79219.

Both of these values are relatively high, taking into account
the moderate value of link utilization. This is caused, naturally,
by the autcorrelated structure of the arrival process.

As for the transient characterization of the loss process, in
Fig. 4 the mean number of losses per time unit is depicted for
five different initial queue sizes andJ(0) = 4. All the curves
converge to 0.79219, but, as we can see, this convergence may
be slow, especially for high initial queue sizes.

In Figs. 5, 6, 7 the impact of the initial phase,i , on the
function ∆n,i(t)/t, is depicted for initial buffer occupancy of
0, 50% and 100%, respectively. As we can see, the higher the
initial arrival rate, the slower the convergence to the steady
state (see curves fori = 4 or i = 2). What is more interesting
is that the function may not only be nonmonotonic, but it
may also have more than one extremum (for instance, Fig.
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Fig. 4. The mean number of losses per 1ms as a function of time for
J(0) = 4 and initial system occupancy of 0, 25%, 50%, 75% and 100%,
counting from the bottom. Example 2.
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Fig. 5. The mean number of losses per 1ms as a function of time for initially
empty system (X(0) = 0) and five different states of the modulating chain,
i. e. J(0) = i = 1, . . . , 5. Example 2.

7, i = 3). This is probably caused by the structure of the
transition matrixQ.

Finally, in Fig. 8 the stationary loss ratio as a fuction of the
buffer size for two link utilizations: 72.7% and 99% is shown.
As we can see, in the case of autocorrelated arrival process
and high link utilzation this function may decrease very slowly
and even a large buffer does not eliminate losses completely.

VI. CONCLUSIONS

We presented a study on the packet loss process in a finite-
buffer queue whose arrival process is a Markov-modulated
Poisson process. The MMPP was chosen due to its ability to
model the complex statistical behaviour of network traffic.

The main result, which is the Laplace transform of the mean
number of losses in(0, t], enables quick calculations of the
stationary characteristics of the loss process and, by means
of an inversion algorithm, also enables the calculations of the
transient measures.
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Fig. 6. The mean number of losses per 1ms as a function of time for initial
system occupancy of 50% and five different states of the modulating chain
J(0) = i = 1, . . . , 5. Example 2.

As these losses are common in packet networking and the
ability to compute the characteristics of the loss process is
helpful in network design, we believe that this study is of
practical importance.

The results presented herein are devoted to the average
number of losses. It is easily seen that they can be extended to
the probability distribution instead of the average value. For
this purpose, it is sufficient to use the function

∆n,i(t, l) = P(L(t) = l|X(0) = n, J(0) = i)

instead of∆n,i(t), and obtaining an analog of Theorem 1 for
the transform of∆n,i(t, l) is straightforward.
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