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Abstract— Batch Markovian Arrival Process – BMAP – is a
teletraffic model which combines high ability to imitate complex
statistical behaviour of network traces with relative simplicity
in analysis and simulation. It is also a generalization of a wide
class of Markovian processes, a class which in particular include
the Poisson process, the compound Poisson process, the Markov-
modulated Poisson process, the phase-type renewal process and
others. In this paper we study the main queueing performance
characteristic of a finite-buffer queue fed by the BMAP, namely
the queue length distribution. In particular, we show a formula
for the Laplace transform of the queue length distribution. The
main benefit of this formula is that it may be used to obtain
both transient and stationary characteristics. To demonstrate
this, several numerical results are presented.

Index Terms— teletraffic modeling, finite-buffer queue, BMAP,
performance evaluation

I. I NTRODUCTION

The batch Markovian arrival process was invented by Neuts
and in the beginning it was called the versatile Markovian
point process or theN -process. Then, Lucantoni replaced the
original complicated parameterization of theN -process by a
new one, more simple and intuitive. Since then the process
has been called the batch Markovian arrival process (BMAP).

The BMAP is a tool of choice for traffic modeling and
predictability, performance evaluation of buffering processes,
congestion and admission control mechanisms etc.

It is worth recommending for several reasons. Firstly, it
is able to mimic the self-similar and bursty nature ([3], [4])
of network traces, remaining analytically tractable due to its
Markovian structure.

Secondly, the BMAP generalizes a wide set of processes
used in teletraffic modeling. For instance, by setting the proper
parameterization of the BMAP we may obtain a Poisson
process, a batch Poisson process, a Markov-modulated Poisson
Process (MMPP), a Markovian arrival process (MAP) or a
phase-type renewal process. Some of them are classic, others,
like MMPP, gained great attention in applications connected
with multimedia and ATM [5]–[9]. All results obtained for the
BMAP can be automatically used for the processes mentioned
above.

Thirdly, the BMAP is successfully used for the modeling
of aggregated IP traffic [10], [11]. In this approach, different
lengths of IP packets are represented by BMAP batch sizes.
What is important is that algorithms for the fitting of the
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BMAP parameters to recorded IP traces are available [10],
[11]. Some examples of particular performance issues con-
nected with IP networks, analyzed by means of the BMAP,
can be found by the reader in [12], [13].

In this paper we deal with the basic characteristic of a
single-server queueing system, namely the queue size distrib-
ution. The queue size distribution and its parameters (average,
variance) play an important role in the performance evaluation
of buffering mechanisms in network devices by providing
fundamental insight into the system’s behaviour.

The main contribution of this paper is the Laplace transform
of the transient queue size distribution in the BMAP queue
with finite buffer (Theorem 1). To the best of the author’s
knowledge, there have been no reported results of this type
yet. The classic papers by Ramaswami and Lucantoni [2],
[14]–[16] are devoted to BMAP queues with infinite buffers.
Articles in which the finite-buffer model is investigated are
rare and deal with stationary characteristics [17] or special
cases of the BMAP, like MMPP [18], only.

The original approach applied in this paper gives the results
in a closed form which permits one to easily compute the sta-
tionary as well as the time-dependent queue size distribution.
All the analytical results obtained herein were checked and
confirmed by means of a discrete-event simulator written in
OMNET++ [19].

The paper is organized as follows. Firstly, the model of the
queue and the arrival process are presented and the notation
is listed (section II). Then, in section III, the formula for the
transform of the transient queue size is proven. Furthermore,
some remarks on how it can be used in practice for obtaining
time-dependent and stationary queue size distributions are
given. In section IV, a set of numerical examples based on
four different BMAP parameterizations is shown. In addition,
computational aspects connected with coefficient matrices oc-
curring in the main formula are discussed. Finally, conclusions
are gathered in section V.

II. QUEUEING MODEL AND NOTATION

In the paper we investigate a single server queueing system
whose arrival process is given by a BMAP. The service time is
distributed according to a distribution functionF (·), the buffer
size (queueing capacity) is finite and equal tob (including
service position). In Kendall’s notation, the system described
is denoted byBMAP/G/1/b.

As regards the BMAP, it is constructed by considering a 2-
dimensional Markov process(N(t), J(t)) on the state space
{(i, j) : i ≥ 0, 1 ≤ j ≤ m} with an infinitesimal generatorQ
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in the form:

Q =




D0 D1 D2 D3 · ·
D0 D1 D2 · ·

D0 D1 · ·
· · ·


 ,

where Dk, k ≥ 0 are m × m matrices.Dk, k ≥ 1 are
nonnegative,D0 has nonnegative off-diagonal elements and
negative diagonal elements and

D =
∞∑

k=0

Dk

is an irreducible infinitesimal generator (see [2]). It is assumed
that D 6= D0. Variate N(t) represents the total number of
arrivals in (0, t), while variateJ(t) represents the auxiliary
state (phase) of the modulating Markov process.

If π denotes the stationary vector forD (πD = 0, π1 = 1)
and1 stands for the column vector of 1’s, then the total average
intensity of the BMAP can be calculated as:

Λ = π
∞∑

k=1

kDk1, (1)

while the intensity of group arrivals as:

Λg = π(−D0)1. (2)

The variance of the interarrival time is given by:

V ar = − 2
Λg

πD−1
0 1− 1

Λ2
g

. (3)

Finally, the correlation between two consecutive interarrival
times can be calculated as follows:

ρ =
1

V ar

(
1
Λg

πD−1
0 (D −D0)D−1

0 1− 1
Λ2

g

)
. (4)

An alternative, constructive definition of a BMAP is the
following. Assume the modulating Markov process is in some
state i, 1 ≤ i ≤ m. The sojourn time in that state has
exponential distribution with parameterλi. At the end of that
time there occurs a transition to another state and/or the arrival
of a batch. Namely, with probabilitypi(j, k), 1 ≤ k ≤ m,
j ≥ 0, there will be a transition to statek with a batch arrival
of size j. It is assumed that:

pi(0, i) = 0,

and ∞∑

j=0

m∑

k=1

pi(j, k) = 1, 0 ≤ i ≤ m.

The relations between parametersDk andλi, pi(j, k) are the
following:

λi = −(D0)ii, 1 ≤ i ≤ m,

pi(0, k) =
1
λi

(D0)ik, 1 ≤ i, k ≤ m, k 6= i,

pi(j, k) =
1
λi

(Dj)ik, 1 ≤ i, k ≤ m, j ≥ 1.

In the sequel, the following notation will be of use:
P(·) – the probability

X(t) – the queue size at the momentt (including service
position if not empty)

Pi,j(n, t) = P(N(t)=n, J(t)=j | N(0)=0, J(0)=i) –
the counting function for the BMAP.N(t) denotes the
total number of arrivals in(0, t)

ak,i,j(s)=
∫∞
0

e−stPi,j(k, t)dF (t),

f(s) =
∫∞
0

e−stdF (t) – the transform of the service
time distribution

δij – the Kronecker symbol (δij = 1 if i = j and 0
otherwise)

In addition, we will be using the followingm×m matrices:

I = m×m identity matrix,
0 = m×m matrix of zeroes,

Ak(s) = [ak,i,j(s)]i,j ,

Yk(s) =
[
λipi(k, j)

s + λi

]

i,j

,

Dk(s) =
[∫ ∞

0

e−stPi,j(k, t)(1− F (t))dt

]

i,j

,

Ak(s) =
∞∑

i=k

Ai(s),

Bk(s) = Ak+1(s)−Ak+1(s)(A0(s))−1,

R0(s) = 0,

R1(s) = A−1
0 (s),

Rk(s) = R1(s)[Rk−1(s)−
k−1∑

i=0

Ai+1(s)Rk−i(s)], k ≥ 2,

Mb(s) = Rb+1(s)A0(s) +
b∑

k=0

Rb−k(s)Bk(s)−
∞∑

k=b+1

Yk(s)

−
b∑

k=0

Yb−k(s)[Rk+1(s)A0(s)+
k∑

i=0

Rk−i(s)Bi(s)].

and column vectors of sizem:

1 = the column vector of 1’s,
z(s) = ((s + λ1)−1, . . . , (s + λm)−1)T .

III. QUEUE SIZE DISTRIBUTION

In a BMAP queue, all the time-dependent characteristics
depend on the initial queue size,X(0), and the initial state
of the modulating process,J(0). This dependence will be
represented by indicesn, i in the queue size distribution:

Φn,i(t, l) = P(X(t) = l|X(0) = n, J(0) = i).

Naturally, l and n vary from 0 to b while i varies from 1 to
m. In the stationary case the dependence onX(0) and J(0)
vanishes and we may simply denote the stationary queue size
distribution bypl where

pl = lim
t→∞

P(X(t)= l) = lim
t→∞

P(X(t)= l|X(0)=n, J(0)= i)

andn, i can be arbitrary.

276 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 4, DECEMBER 2006



The main result of this paper is expressed in terms of the
Laplace transform:

φn,i(s, l) =
∫ ∞

0

e−stΦn,i(t, l)dt,

and the column vector representing different initial states of
the modulating process:

φn(s, l) = (φn,1(s, l), . . . , φn,m(s, l))T .

Theorem 1:The Laplace transform of the queue size distri-
bution in theBMAP/G/1/b queue has the form:

φn(s, l) =
b−n∑

k=0

Rb−n−k(s)gk(s, l)

+[Rb−n+1(s)A0(s) +
b−n∑

k=0

Rb−n−k(s)Bk(s)]M−1
b (s)mb(s, l),

(5)
where

gk(s, l) = Ak+1(s)(A0(s))−1rb(s, l)− rb−k(s, l),

rn(s, l) =





0 · 1, if l < n,

Dl−n(s) · 1, if n ≤ l < b,

1−f(s)
s · 1−∑b−n−1

k=0 Dk(s) · 1, if l = b.

mb(s, l) =
b∑

k=0

Yb−k(s)
k∑

i=0

Rk−i(s)gi(s, l)

−
b∑

k=0

Rb−k(s)gk(s, l) + δ0lz(s).

P r o o f. Conditioning on the first departure moment we
may write for0 < n ≤ b, 1 ≤ i ≤ m:

Φn,i(t, l) =
m∑

j=1

b−n−1∑

k=0

∫ t

0

Φn+k−1,j(t− u, l)Pi,j(k, u)dF (u)

+
m∑

j=1

∞∑

k=b−n

∫ t

0

Φb−1,j(t− u, l)Pi,j(k, u)dF (u)

+ ρn,i(t, l), (6)

where

ρn,i(t, l) = (1−F (t))·





0, if l < n,
∑m

j=1 Pi,j(l − n, t), if n ≤ l < b,
∑m

j=1

∑∞
k=b−n Pi,j(k, t), if l = b.

Similarly, if n = 0 then for1 ≤ i ≤ m we have:

Φ0,i(t, l) =
m∑

j=1

b∑

k=0

∫ t

0

Φk,j(t− u, l)pi(k, j)λie
−λiudu

+
m∑

j=1

∞∑

k=b+1

∫ t

0

Φb,j(t− u, l)pi(k, j)λie
−λiudu

+ δ0le
−λit. (7)

Applying transforms to (6) and (7) yields:

φn,i(s, l) =
m∑

j=1

b−n−1∑

k=0

ak,i,j(s)φn+k−1,j(s, l)

+
m∑

j=1

∞∑

k=b−n

ak,i,j(s)φb−1,j(s, l)

+
∫ ∞

0

e−stρn,i(t, l)dt,

and

φ0,i(s, l) =
m∑

j=1

b∑

k=0

pi(k, j)φk,j(s, l)
λi

s + λi

+
m∑

j=1

∞∑

k=b+1

pi(k, j)φb,j(s, l)
λi

s + λi

+ δ0l
1

s + λi
,

respectively. Next, applying matrix notation we get:

φn(s, l) =
b−n−1∑

k=0

Ak(s)φn+k−1(s, l) +
∞∑

k=b−n

Ak(s)φb−1(s, l)

+rn(s, l), 0 < n ≤ b, (8)

φ0(s, l) =
b∑

k=0

Yk(s)φk(s, l) +
∞∑

k=b+1

Yk(s)φb(s, l) + δ0lz(s).

(9)
Denotingϕn(s, l) = φb−n(s, l) we may rewrite (8) and (9) as
follows:

n∑

k=−1

Ak+1(s)ϕn−k(s, l)−ϕn(s, l) = ψn(s, l), 0 ≤ n < b,

(10)

ϕb(s, l) =
b∑

k=0

Yb−k(s)ϕk(s, l)+
∞∑

k=b+1

Yk(s)ϕ0(s, l)+δ0lz(s),

(11)
where

ψn(s, l) = An+1(s)ϕ0(s, l)−
∞∑

k=n+1

Ak(s)ϕ1(s, l)−rb−n(s, l).

Now, the system of equations (10) has the following solution:

ϕn(s, l) = Rn+1(s)c(s, l) +
n∑

k=0

Rn−k(s)ψk(s, l), n ≥ 0,

(12)
where c(s, l) is a function that does not depend onn (see,
for comparison, [20], page 343). Therefore we are left with
the task of findingϕ0(s, l), ϕ1(s, l), which is necessary for
calculatingψk(s, l), and the functionc(s, l). Substitutingn =
0 in (12) we can easily obtain

c(s, l) = A0(s)ϕ0(s, l), (13)

Substitutingn = 0 in (10) we have

ϕ1(s, l) = (A0(s))−1(ϕ0(s, l)− rb(s, l)), (14)
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which reduces the problem to findingϕ0(s, l). Using the
boundary condition (11) we get

ϕ0(s, l) = M−1
b (s)mb(s, l),

which finishes the proof. ¤
Formula (5) may be used in practice in several ways.

First, using the well-known limiting behaviour of the Laplace
transform we can easily obtain the stationary queue size
distribution:

pl = lim
t→∞

P(X(t) = l) = lim
s→0+

sφb(s, l).

Instead ofb in φb(s, l), any other initial queue size can be
chosen. However, usingb is recommended as in this case the
formula (5) reduces to its simplest form, namely

φb(s, l) = M−1
b (s)mb(s, l).

Next, we may obtain the average stationary queue size

L =
b∑

k=0

lpl

and all moments, for instance variance

V ar =
b∑

k=0

(l − L)2pl.

Furthermore, we can obtain also the time-dependent queue size
distribution, average, variance etc. To accomplish that, we have
to invert the Laplace transform presented in (5). For instance,
in [21] an efficient method based on the Euler summation
formula is presented. It has the following form

f(t) ≈
m∑

k=0

n+k∑

j=0

(
m

k

)
2−m(−1)jaj(t), (15)

where

ak(t) =
eA/2t

2lt
bk(t), k ≥ 0,

b0(t) = f∗
(

A

2lt

)
+ 2

l∑

j=1

Re

[
f∗

(
A

2lt
+

ijπ

lt

)
eijπ/t

]
,

bk(t) = 2
l∑

j=1

Re

[
f∗

(
A

2lt
+

ijπ

lt
+

ikπ

t

)
eijπ/t

]
, k ≥ 1.

f∗(s) denotes a transform to be inverted,f(t) is the original
function, parametersm, n, A, l are used to control the
inversion error. Proposed in [21] typical values arem = 11,
n = 38, A = 19 andl = 1. An easy verification shows that for
this set of control parameters, 51 transform values are required
in order to obtain one value of the original function.

IV. N UMERICAL ILLUSTRATION

Before numerical examples are given, it is worth mentioning
that matricesAk(s) andDk(s), which appear in Theorem 1,
can be calculated effectively by means of the uniformization
technique, described in [2]. For instance, if the service time is
constant and equal tod, applying this technique we get:

An(s) =
∞∑

j=0

γj(s)Kn,j , Dn(s) =
∞∑

j=0

δj(s)Kn,j , (16)

where

K0,0 = I,

Kn,0 = 0, n ≥ 1,

K0,j+1 = K0,j(I + θ−1D0),

Kn,j+1 = θ−1
n−1∑

i=0

Ki,jDn−i + Kn,j(I + θ−1D0),

θ = max
i
{(−D0)ii},

γj(s) =
e−(θ+s)d(θd)j

j!
,

δj(s) = θj Γ(j + 1, 0)− Γ(j + 1, d(s + θ))
j!(s + θ)j+1

,

andΓ(j, x) denotes the incomplete gamma function.
The remaining matrices and vectors in Theorem 1 are either

trivial (like Yk(s), z(s)) or simple functions ofAk(s) and
Dk(s).

A. Example 1

In this example we use three different BMAPs to demon-
strate an impact of the autocorrelation in the arrival process
on the queue size distribution. Namely, we assume that

D0 =
[ −10 0.1

0.01 −0.1

]
,

is common and set
1) BMAP0:

D1 =
[

0.909367 0.080633
0.008267 0.000733

]
,

D2 =
[

1.818734 0.161266
0.016534 0.001466

]
,

D5 =
[

6.365569 0.564431
0.057869 0.005131

]
,

2) BMAP0.2:

D1 =
[

0.947856 0.042144
0.004332 0.004668

]
,

D2 =
[

1.895711 0.084289
0.008663 0.009337

]
,

D5 =
[

6.634989 0.295011
0.030321 0.032679

]
,
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3) BMAP0.4:

D1 =
[

0.986344 0.003656
0.000396 0.008604

]
,

D2 =
[

1.972688 0.007312
0.000793 0.017207

]
,

D5 =
[

6.904409 0.025591
0.002774 0.060226

]
,

These parameterizations were chosen in such a way that
the resulting BMAPs have common average batch size= 4,
common batch arrival rateΛg = 1, common total arrival rate
Λ = 4 and common variance of the interarrival timeV ar =
17.21. However, the correlations between two consecutive
interarrival times (see (4)) are equal to 0,0.2 and 0.4 for
BMAP0, BMAP0.2 andBMAP0.4, respectively.

It is assumed that the service time is constant and equal to
0.2, which makes the load offered to the queue to be of80%.
The buffer size is50.

We can now obtain sample queue size distributions. We
start with transient distribution, which depends on the initial
state of the system. We assume that initially the buffer is full
(X(0) = b = 50) and that the initial state of the modulating
process is 1.

Figures 1-4 show transient queue size distributions in times
t = 2.5, t = 5, t = 10 and t = 20, respectively. In each
figure three curves, representingBMAP0, BMAP0.2 and
BMAP0.4, are depicted.

Firstly, we can see that these distributions may assume
rather complicated shapes. This effect is typical for the batch
arrival queue and the irregularities in the shape are connected
with batch sizes and their combinations. In this example we
have three possible batch sizes (1, 2, 5), therefore we can
observe concentrations of probability mass connected with
arrivals of 1, 2, 5 cells, but also with 1+2, 1+5, 2+5 etc.

Secondly, the autocorrelation in the arrival process severely
influences the queue size distribution. The higher the autocor-
relation, the more of the probability mass concentrated around
b and the higher the full-buffer probability, which is connected
with losses.

What is more, the autocorrelation in the arrival process
influences the convergence to the steady-state distribution.
This effect can be observed in Figs. 5-7. ForBMAP0,
distribution closely resembling the shape of the steady-state
curve is obtained fort around 15. ForBMAP0.2 it takes
around 20 to obtain steady state while forBMAP0.4 the
steady-state curve can be obtained fort over 30.

B. Example 2

In this example we demonstrate the queue size distribution
using a BMAP parameterization based on measurements of
aggregated IP traffic. For this purpose, a trace file recorded at
the Front Range GigaPOP (FRG) aggregation point, which is
run by PMA (Passive Measurement and Analysis Project, see
http://pma.nlanr.net) has been utilized1. The average rate of
the traffic is 72 MBytes/s, with mean packet size of 869Bytes.

1Precisely, one million packet headers from the trace file FRG-1137458803-
1.tsh, recorded on Jan 17th, 2006, were used.
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Fig. 1. Transient queue size distributions at timet = 2.5 for BMAP0,
BMAP0.2 andBMAP0.4 arrivals (Example 1).
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Fig. 2. Transient queue size distributions at timet = 5 for BMAP0,
BMAP0.2 andBMAP0.4 arrivals (Example 1).

As IP traces are often dominated by several most frequent
packet sizes [10], it is not necessary to take all possible packet
sizes into account. In the sample used herein, seven packet
sizes (40, 52, 552, 1300, 1420, 1488, 1500) account for 97
percent of the traffic and only these sizes were used. Using
the expectation-maximization (EM) method [10] the following
BMAP parameters were estimated:

D0 =



−90020.6 5300.2 11454.4

9132.5 −126814.5 14807.8
2923.1 198.6 −94942.6


 ,

D40 =




2898.0 3415.6 1365.3
3649.6 1510.9 1044.6
1943.3 1954.9 7696.6


 ,

D52 =




10980.1 8180.1 3284.0
5875.6 19512.8 19443.1
4064.1 9956.0 2744.3


 ,

D552 =




1259.3 1143.0 960.4
1343.6 1541.2 3903.5
2470.5 1607.7 665.2


 ,
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Fig. 3. Transient queue size distributions at timet = 10 for BMAP0,
BMAP0.2 andBMAP0.4 arrivals (Example 1).
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Fig. 4. Transient queue size distributions at timet = 20 for BMAP0,
BMAP0.2 andBMAP0.4 arrivals (Example 1).

D1300 =




115.3 174.5 188.1
333.8 28.0 405.9
337.3 124.4 552.4


 ,

D1420 =




878.9 65.6 506.4
916.4 31.1 999.1
205.0 138.1 1603.7


 ,

D1488 =




95.1 93.2 61.3
199.5 175.3 129.7
192.2 34.6 107.5


 ,

D1500 =




13997.0 14089.9 9514.9
31145.3 9632.8 1052.4
17681.9 14814.8 22926.4


 .

Basic characteristics of the original traffic sample and its
BMAP model are shown in Table I.

In practice, packets are usually segmented into fixed size
units prior to storage, which is connected with memory
architecture for fast packet buffering in routers and switches
[23]. Therefore, for computation of the buffer occupancy dis-
tribution we will rather use the following BMAP parameters:

D′
1 = D40 + D52, D′

9 = D552, D
′
21 = D1300,
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Fig. 5. Transient queue size distributions forBMAP0 arrivals (Example
1). Each curve represents a different moment in time, namelyt = 2.5, t = 5,
t = 10, t = 15, counting from the top. The lowest, thick curve represents
steady state.
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Fig. 6. Transient queue size distributions forBMAP0.2 arrivals (Example
1). Each curve represents a different moment in time, namelyt = 2.5, t = 5,
t = 10, t = 15, counting from the top. The lowest, thick curve represents
steady state.

D′
23 = D1420, D′

24 = D1488 + D1500.

where the new indices denote numbers of occupied units,
assuming typical unit size of 64Bytes [23].

We assume that the queue is served at the constant rate of
80MB/s (1310720 units/s) and the buffer size is 100KBytes.
The initial state of the modulating process,J(0), is distributed
according to

π = (0.39517, 0.24563, 0.35920). (17)

Now we are in a position to present the numerical results.
In Figs. 8, 9 the stationary queue size distribution for the
system considered is presented. In particular, in Fig 8 the
whole distribution is depicted while in 9 a close-up of range
0-5KB is shown. The average queue size is:

L = 9.584 KBytes,

while its standard deviation:
√

V ar = 9.998 KBytes,
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Fig. 7. Transient queue size distributions forBMAP0.4 arrivals (Example
1). Each curve represents a different moment in time, namelyt = 2.5, t = 5,
t = 10, t = 20, t = 30, counting from the top. The lowest, thick curve
represents steady state.

traffic sample BMAP
mean packet interarr. time [µs] 11.467 11.467

standard dev. of the interarr. time [µs] 11.599 11.594
mean packet size [Bytes] 869.18 869.38

total arrival rate [MBytes/s] 72.286 72.301

TABLE I
PARAMETERS OF THE ORIGINAL TRAFFIC SAMPLE AND ITSBMAP

MODEL.

The probability that the buffer is empty equals to

p0 = 6.769× 10−2,

while the probability that the buffer is full is

pb = 1.367× 10−7.

As in Example 1, it is striking that the distribution has
jumps in the lower range and its shape is rather complicated.
Again, this effect is caused by the batch structure of the arrival
process and in a way reflects the batch size distribution. For
instance, the high peak observed in Fig. 9 around 1.5KB is
connected with high probability of 1500B packet and high
values of elements ofD1500.

On the other hand, for larger queue sizes the shape becomes
simple and the function is approximately linear (on a log-
scaled plot).

The statistical structure of the BMAP, which reflects the
structure of the original traffic, has a deep impact on the
queue size distribution. To demonstrate this, we may replace
the BMAP by the Poisson process with exactly the same arrival
rate. In this case we obtain2

L = 470.6 Bytes,√
V ar = 464.0 Bytes,

pb = 3.792× 10−98.

2The formulae for the classicM/G/1/b queue, which were used for
obtaining this set of results, can be found by the reader in [22], page 202.

This set of numbers, which is in dramatic contrast to the previ-
ous one, illustrates how misleading it may be to neglect taking
the precise statistical structure of the traffic into account.
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Fig. 8. Stationary queue size distribution in Example 2.
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Fig. 9. Stationary queue size distribution in Example 2 - a close-up of the
range 0-5KB.

V. CONCLUSIONS

In this paper, an analysis of the queue size distribution
in a BMAP queue with finite buffer was conducted. It is
reasonable to believe that the presented results are of practical
importance due to the following reasons. Firstly, a very flexible
arrival process, which among other things can model IP traffic,
was considered. Secondly, the finite buffer was assumed.
In a real network all elements (switches, routers etc.) have
finite buffers, which causes losses and influences the network
performance. Thirdly, the results were presented in a closed,
easy to use form, and they permit one to obtain both, transient
and stationary queue size distributions. Finally, computational
remarks were given. In particular, formulas for the numerical
calculation of the coefficient matricesAk(s) andDk(s), which
occur in the main theorem, were shown.
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