
Harnessing XMPP for Machine-to-Machine 

Communications & Pervasive Applications 
 

Antti Iivari, Teemu Väisänen, Mahdi Ben Alaya, Tero Riipinen, and Thierry Monteil 

 

 

Abstract — An ever increasing number of interconnected 

embedded devices, or Machine-to-Machine (M2M) systems, are 

changing the way we live, work and play. M2M systems as a 

whole are typically characterized by the diversity in both the type 

of device and type of network access technology employed, and 

such systems are often still today task-specific and built for just 

one specific application. Smart lighting, remote monitoring and 

control of all kinds of consumer devices and industrial 

equipment, safety and security monitoring devices and smart 

health and fitness products, exemplify this revolution of 

intercommunicating machines. However, the differences in 

communication technologies and data formats among such 

devices and systems are leading to a huge complexity explosion 

problem and a strongly fragmented market, with no true 

interoperability. Due to these problems, the full potential of M2M 

technology has yet to be fulfilled. In this paper, we examine the 

suitability of the Extensible Messaging and Presence Protocol 

(XMPP) and experiment with its potential to rise to the challenge 

of machine-to-machine communications and meet the needs of 

modern pervasive applications. Experimental implementations 

and some proof-of-concept solutions are also presented.  
 

Index terms — Machine-to-Machine, XMPP, Internet-of-

things, Interoperability, Applications 

I. INTRODUCTION 

      
Machine-to-Machine (M2M) refers to the automated exchange of 

information between servers, sensors, actuators, and various end 

devices such as mobile phones, vending machines, vehicles, and 

personal computers. All kinds of information exchange between 

various kinds of communicating machines, with limited or no human 

intervention, can be referred to as M2M communication. This gives 

rise to many obvious advantages such as real time data exchange 

between devices in the field, remote monitoring and operation 

according to real needs, immediate reactivity to business information, 

automatic processing of consumption statistics and operational data 

are made readily available. Different application domains are brought 

together by M2M technology. Data communication takes place via 

established ICT (Information and Communication Technology) 

infrastructure and communication media is based on both fixed and 

wireless (mobile) technology. Indeed, such devices are longer 

restricted to communicating only with other machines in the same 

local system, or even in the same application domain. 
 

In essence, M2M (Machine-to-machine) [1] is always a mixture of 

various kinds of electronic devices, communication technologies  and 
 
 

Manuscript received May 9, 2014; revised September 5, 2014. 

 A. Iivari, T. Väisänen and T. Riipinen are with the VTT Technical 

Research Centre of Finland, Kaitoväylä 1, Oulu FI-90571 Oulu, Finland        
(e-mail: { antti.iivari, teemu.vaisanen, tero.riipinen}@vtt.fi). 

 M. B. Alaya and T. Monteil are with the LAAS-CNRS,7 avenue du Colonel 

Roche, 31077 Toulouse, France (e-mail: {ben.alaya, monteil}@laas.fr). 

software implementations. M2M can be defined simply as machines 

intercommunicating without, or with limited, human intervention.  

 

M2M constitute systems that enable the wireless and wired 

devices, both big and small, to exchange information with other 

devices and actors included in the M2M ecosystem. Typically, 

devices such as sensors and meters are used to capture raw data 

which is then transferred through a network to the M2M applications. 

These pieces of data are then transformed into meaningful pieces of 

information by the background system. Any interoperable M2M 

system will obviously need to support a mixture of legacy and 

modern technologies and protocols, which is already a tough 

challenge in itself. Furthermore, to have these machines really 

intercommunicate in a meaningful manner, it is not enough to simply 

enforce compatible communication protocols, as the transmitted 

information itself must also be processed and stored in a format that 

is accessible to both man and machine. Technologies used commonly 

in M2M include naming and identification of M2M entities, service 

discovery (SD), security including, e.g., authentication and 

encryption techniques, service platforms, wireless radios, data 

formats and communication protocols. Many different technologies 

and standards exists, all attempting to provide a solution for one or 

more of these issues given rise by M2M and pervasive applications, 

but it quickly becomes evident that the technology to unleash the full 

potential of M2M is still missing [1],[2].  

 

In the second chapter of this paper, we will begin with discussion 

on machine-to-machine communications and related technologies in 

general. Then we will continue with more in-depth content on the 

main topic of this work, the XMPP protocol and a study on its 

applicability for M2M purposes in the third chapter. After this, 

carrying on to the fourth chapter, the experiments and proof-of-

concept implementations based on the XMPP-technology will be 

presented. Finally, in the conclusions, we will summarize the work, 

discuss the results and consider some of the items that are still left for 

future works. 

II. MACHINE-TO-MACHINE COMMUNICATIONS 
 

Machine-to-machine systems blur the line between the physical- 

and virtual worlds, making use of various communication 

technologies to enable remote monitoring, control, updating and 

interaction with all sorts of communication enabled machines and 

asset devices in any application domain. Typically, these interactions 

occur without or with limited human interaction. In this section 

certain characteristics, requirements, technologies and standards 

relating to M2M are discussed. 

 

Machine-to-machine systems, from a communication engineering 

point of view, are an especially challenging endeavour. This is due to 

the fact that these systems typically consist of myriads of inter-

communicating devices with extremely heterogeneous characteristics, 

requirements and capabilities operating in various application 

domains and environments [3]. From the tiniest power-constrained

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014 163

1845-6421/09/8351 © 2014 CCIS



sensors and actuators to computationally powerful smart devices and 

servers, these complex distributed systems must be designed from the 

ground up with considerations such as; scalability, security, 

interoperability, flexibility, extensibility and robustness always at the 

forefront. In addition, with M2M systems vastly different network 

access methods and wired or wireless communication technologies 

are employed as required by the application domain at hand [1]. A 

M2M system always includes software services in addition to the 

actual machines and hardware devices, in one form or another. 

Indeed, one of the key challenges in designing interoperable M2M 

systems is the software that enables horizontal interoperability 

between various services and software agents. Existing M2M 

solutions are typically dedicated to a single specific application and 

serve only a limited set of usage scenarios or a single business need. 

In these cases, the software and hardware, sometimes even the 

communication protocols, are tailor-made for a certain proprietary 

products. This can be seen as “vertical M2M”, where the developed 

solutions are customized and fitted specifically for a single solution, 

with no concern for interoperability or the bigger picture. Also, the 

multitude of technologies and competing standards, none of which 

are truly interoperable or able to understand each other, are causing 

major issues for engineers working within the M2M field.  

Consequently, there is a dire need for interoperable and future-proof 

M2M technologies that ensure horizontal interoperability between 

M2M actors and applications while still providing all the necessary 

functionalities to cover a multitude of application domains [3],[4].  

 

End-to-end M2M communication can be established with one or 

more protocol conversion gateways, but the trend is to build systems 

where real end-to-end communication is possible, for example using 

IPv6 as advocated by Internet Protocol for Smart Objects (IPSO) 

Alliance  [5]. In the literature, technologies enabling interoperable 

M2M communication are called M2M or IoT [6] middleware, other 

such as smart environment middleware [7] or just middleware [8], 

M2M overlays [9], service infrastructures for IoT [10] or for M2M, 

private M2M service space [11], M2M service networks or just M2M 

communication [12]. In recent years, there have been also research 

efforts to enable capabilities related to autonomic computation, 

opportunistic communication and self-configuration in the context of 

M2M and IoT. [13], [14]. 

A. Characteristics and requirements for M2M 

Communication 
 

The full scope of the M2M communication challenge is probably 

best elucidated by a high-level system diagram. An abstract overview 

diagram illustrating the various aspects and main functionalities of a 

complete M2M communication system is shown in Fig. 1. On the left 

side of the image, various existing systems are portrayed within their 

own small areas. These systems are connected then connected to the 

rest of the system via M2M gateways.  The overlay communication 

between the different gateways, M2M devices (those that are not 

behind the gateway) and servers takes place over existing 

communication infrastructure. As already discussed earlier, the M2M 

system must be able to operate efficiently over existing ICT 

infrastructure utilizing internet protocols (IP) wherever possible and 

function correctly regardless of the existing technologies or protocols 

underneath. There are several implications from this, and we will 

discuss them in this section.  
 

Secure, efficient and adaptive M2M message exchange over existing 

ICT-infrastructure in an overlay-type [15] of manner will become a 

critical part of the interoperable machine-to-machine solution. On top 

of the IP stack we will need to have some kind of an open and 

extensible (e.g. XML-based) messaging solution, that will effectively 

create an overlay or ,“a logical network on top of a network”, if you 

will. Machine-to-Machine clients, asset devices, back-ends and 

 
Fig. 1. A high-level overview of a M2M system. 

 
gateways will exchange M2M messages with one another without the 

underlying IP world necessarily understanding anything about them. 

The regular IP-nodes are just relaying and routing them forward 

according to the legacy rules like any other packet over the internet. 

As not every modem, router or device along the way will directly be 

part, or even aware, of the M2M ecosystem, an overlay network will 

inevitably be formed [15], [16]. 

 

One of the most basic requirements for the system is the ability for 

simple, effective and secure client-server communication. This 

means, essentially, any communication from M2M clients or 

gateways towards the M2M server(s). The server side will effectively 

provide querying devices information on any other available devices, 

services and resources connected to the M2M ecosystem as required 

by pervasive applications and ubiquitous environments [17]. The 

servers can be seen to act as central points or hubs that collect and 

store data on nearby entities, their status, availability, services, 

resources, etc. The server will also be critical in the process for 

authentication and establishing trust between M2M devices. Also, 

communication between servers, or server federation, must be 

supported. Relying on devices and services to function properly using 

only pure peer-to-peer and ad-hoc mechanisms, such as flooding 

routing/discovery queries of various kinds, in a large-scale M2M 

ecosystem is not realistic especially when the scalability requirements 

are a part of the equation. Therefore, we assume that certain server 

side functionalities are required and form another key component of 

the interoperable M2M communication system. Furthermore, the 

interoperable M2M system must support multiple M2M servers 

working together and being part of the same overall system through 

secure server-to-server communication. The servers might even be 

operated by different service providers all sharing the goal of 

enabling truly interoperable M2M capabilities for their products and 

services for added value. 

 

The key functionalities for M2M systems can also be looked at in 

the form of a simplified layered structure, as demonstrated in Fig. 2, 

where a subset of standards and technologies relevant for M2M are 

arranged into a stack-like layer diagram for illustration purposes. The 

layers in the stack correspond to the various level of abstract 

functionality within an M2M ecosystem to further illustrate where 

these technologies can be mapped to for a M2M system design. Thus, 

the diagram consists of three technology layers; one for devices, 

another for messaging and the third one for M2M information and 

services. M2M security, as a cross-layer issue, is also evident in the 

left hand side of the diagram to emphasize that fact that to bring forth 

a robust and trustworthy design for a system of intercommunicating 

machines from various application domains, concerns relating to 

164 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014



security and privacy must be seriously taken into account throughout 

all aspects of the system design. At this point, it must be emphasized 

that this division of M2M functionalities into three layers herein is 

purely an abstract notion to structure and classify conceptually the 

abundance of information and as such, it should not be compared to 

e.g. the Open Systems Interconnection model (OSI). 

 

 
Fig. 2. Conceptual layers of technology relevant for M2M. 

 

To gain a deeper understanding of the M2M problem, we shall 

discuss the layer diagram a bit further. At the lowest level there are 

the various physical end-devices themselves of the M2M-system 

constituting what is herein referred to as the “M2M Device layer”, 

and these devices – ranging from miniscule sensors to large industrial 

machinery – operate with vastly different technologies, operational 

characteristics and application environments. These are commonly 

also referred to as M2M asset devices.  In most cases on the field 

today, the machines are then connected via some network access 

technology - wired or wireless - to either a larger backbone network, 

some kind of central hub or only form a limited private area network. 

Typically, radio technologies such as Bluetooth, ZigBee or Wi-Fi are 

utilized by the myriads of such devices in addition to cellular 

communication, different wired interfaces and proprietary 

technologies of varying kind. 

  

In the middle of the layer diagram, we have the concept of “M2M 

Communication Layer” which basically consists of an application 

layer communication protocol with an API for a communication 

platform enabling any and all messaging operations as required by 

the users, applications and services (both man and machine) of the 

M2M Ecosystem. This is, yet again, related to the idea of overlay 

communication, or logical networks on top of networks. The overlay 

communication functionality operates over existing ICT 

infrastructure and standard internet protocols (IP), hiding the 

complexities and problems associated with the different 

communication technologies underneath it. Now, between the device 

layer and the communication layer for M2M, a gateway may or may 

not be needed, as will be discussed in this paper. This is depending on 

whether the asset device is capable of handling the communication 

protocols, such as the chosen application layer protocol and IP, and 

other operations as employed by the rest of the machine-to-machine 

overlay ecosystem by itself. There are several application layer 

protocols that are suitable and have the potential to be employed for 

secure IP-based M2M message exchange, some of which are 

currently being studied and experimented with, such as XMPP. In our 

layer diagram, communication between the M2M device – and 

communication layers is shown to happen either directly, or through 

the M2M Gateway, as discussed previously.  In short, The M2M 

overlay offers a set of communication capabilities to the service layer 

via an open API (application programming interface) upon which the 

services call upon when certain communication operations and 

functionalities are required by the applications or services. 

  

Finally, at the very top of our layered abstraction in Fig. 2, we have 

the “M2M Service Layer”, which can be seen as a selection of 

software platforms, service frameworks, data formats, information 

management solutions and other relevant tools and technologies. The 

service layer consists of everything needed for the users and 

applications to start utilizing the M2M ecosystem for the needs of the 

application domain at hand. The service layer calls upon and utilizes 

the communication mechanisms provided by the M2M 

communication layer below via an open API, as shown in the layer 

diagram. To summarize, the service layer is essentially the foundation 

upon which the applications and services for the end-user (whether 

human or machine) are built. The service layer utilizes the 

communication capabilities provided by the communication layer, 

which in turn hides the challenges at the lower levels (device 

heterogeneity, different communication protocols, radio technologies, 

etc.) by acting as a platform for M2M Overlay networking. In certain 

cases, the gateway is utilized to facilitate communication from the 

various asset devices to the rest of the overlay, and vice versa. Also, 

some of the technologies seen in the layer-diagram are discussed 

further within this document. While the service layer components on 

the diagram each belong to their own technological domain, 

interoperability between applications built based on varying 

technologies can be achieved by means of interoperability gateways 

or interworking proxies, which will be discussed further within this 

paper. 
 

B. M2M Gateways for Interoperability 

 
It is clear that steps must be taken to ensure interoperability with 

existing commercial and resource constrained systems and devices to 

the extent reasonably possible.  Another critical issue is the efficient 

utilization of the entire existing communication infrastructure, 

especially standard internet technologies, for secure and interoperable 

M2M message exchange. There are way too many competing 

protocols, tools, technologies and standards already in the field and, 

therefore, efforts should be made on finding viable approaches by 

combining and enhancing selected existing widely accepted 

technologies and harnessing them to serve M2M in new and 

interesting ways.  The ultimate goal for M2M is to provide a 

functional backbone consisting of certain key universal building 

blocks in order to enable various mechanisms for applications, 

services and users to interact, operate, exchange messages, utilize 

each other’s capabilities, share resources and discover each other in 

ways that are fitting and are useful in any application domain where 

M2M technology is applied. Furthermore, important security policies, 

such as authentication and channel encryption, must be built into the 

system and enforced. Indeed, for true M2M interoperability, it is 

simply not enough to design new communication protocols or service 

platforms and expect it to solve all the problems and everyone to 

suddenly start deploying it. There are already various existing 

systems and technologies on the field in operation which need to be 

taken into account, without altering them or affecting their current 

modes of operation. Issues related to interoperability with existing 

systems and extremely resource constrained devices are typically 

approached by building and designing M2M gateways to facilitate the 

communication to and from an auxiliary system or device [18]. This 

way, the gateway will handle the issues related to communicating 

with either a system based on an incompatible communication 

protocol, or resource constrained devices which are unable to 

communicate with the rest of the system directly due to limited 

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 165



resources or capabilities. While some might consider the effort of 

design and deployment of an additional gateway component to be 

superfluous or suboptimal, the fact remains that having two systems 

with different protocols and data formats intercommunicate is simply 

not possible without a translating element of some sort. Other 

advantages of the gateway approach include congestion control for 

core networks (prevent various signalling messages from the devices 

from flooding the backbone network), convenient management of the 

end-devices in groups, easy deployment of automatic maintenance 

and configuration operations and the potential to leverage unlicensed 

frequency bands for the devices operating “behind” the gateway.  

Typically, gateways such as these are then connected to a server or a 

background system, as in most cases also a back-end side of some 

sort is also an important part of the overall architecture handling 

operations related to data storage, management, centralized control 

and enforcement of important security policies [18], [19]. From a 

communications point of view, the use of servers and background 

systems can also be seen to have a crucial role in combatting the 

various scalability and reliability issues found in pure peer-to-peer 

and ad-hoc -type systems. 

C. Current standardization activities for M2M 
 

As the growth of the M2M communications industry has led to a 

clear need for standards and interoperability for M2M technologies, 

most of the major ICT standardization organizations have formed 

Machine-to-Machine related working groups. Some of these 

standardization activities are briefly discussed in this section. 
      

The European Telecommunications standardization Institute 

(ETSI) [20], 3rd Generation Partnership Project (3GPP) [21], the 

Telecommunications Industry Association (TIA) of the USA [22], 

and Institute of Electrical and Electronics Engineers (IEEE) [23] are 

some of the main standardization bodies that are putting significant 

effort in investigating and identifying M2M challenges, issues and 

architectures. Perhaps the most encompassing mission is the one 

undertaken by oneM2M [24], in which the members are working 

towards the goal of developing technical specifications and reports to 

ensure M2M devices can successfully share information on a global 

scale through a common horizontal service platform. 

D. The ETSI M2M Architecture 
 

Due to the fact that M2M has been declared as one of the main 

strategic topics of ETSI's standardization work, the ETSI has formed 

a M2M technical committee to facilitate the standardization of a 

M2M application layer. This committee in general has a clear focus 

on the service and application middleware rather than the actual 

M2M network and communication techniques. It has been tasked 

with the goal to develop an end-to-end overall high level M2M 

architecture. The committee includes experts and researchers from 

Europe, America and Asia representing research centres, 

telecommunication operators, device vendors, etc. All automated 

exchange of information between machines (even virtual ones) with 

limited human end-user influence is considered machine-to-machine 

communication. The focus is to develop a horizontal Service 

Capability Layer (SCL) that can be used by multiple M2M vertical 

applications. The group aims to provide an end-to-end view of 

Machine to Machine standardization that remains agnostic to the 

telecommunication technologies used at the lower layers. 
 

The ETSI M2M high level architecture contains a Device and 

Gateway domain and a Network domain as described in Fig 3. An 

M2M Device runs M2M Applications using the SCL. It can connect 

directly to the Network Domain via the Access network and may 

provide service to other devices. It can also connect to the Network 

Domain via a Gateway through a Local Area Network. A Gateway 

also runs M2M Applications using the SCL, and acts as a proxy 

between local devices and the network domain. The access network 

allows M2M devices and gateways to communicate with the Core 

Network. The SCL provides functions that can be shared by different 

Applications. Network Management Functions enables to manage the 

Access and Core Networks, such as Provisioning, Supervision, and 

Fault Management. M2M Management Functions consist of all the 

functions required to manage the SCL in the Network Domain. 

 

 
Fig. 3.ETSI M2M high level architecture 

 

Fig. 4 depicts the ETSI M2M functional architecture. An SCL 

includes mandatory service capabilities such as application 

enablement, generic communication, reachability, addressing and 

repository, remote entity management, security. It may include 

optional service capabilities such as history and data retention, 

transaction management, telco operator exposure, and interworking 

proxy. An SCL can be deployed on an M2M network (NSCL), a 

gateway (GSCL), or a device (DSCL). Several primitive procedures 

are defined to enable machine registration, synchronous and 

asynchronous communication, resource discovery, access rights 

management, group broadcast, etc. Three reference points based on 

open APIs are specified: mIa, dIa, and mId. The mIa reference point 

allows a Network Application (NA) to access the NSCL. The dIa 

allows a Device or Gateway Application (D/GA) to access the 

D/GSCL. The mId reference point allows a D/GSCL to access the 

NSCL. These interfaces are defined in a generic way to support a 

wide range of network technologies and protocols to enhance 

interoperability. 

 
 

Fig.4. ETSI M2M functional architecture. 

166 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014



ETSI M2M adopts a RESTful architecture style. Each SCL 

contains a standardized resource tree where the information is stored. 

A resource is uniquely addressable via a Universal Resource 

Identifier (URI), and has a representation that can be transferred and 

manipulated with verbs (e.g. retrieve, update, delete, and execute). 

Each SCL is defined using a resource tree including different kind of 

resources. The “sclBase” resource describes the hosting SCL, and is 

the root for all other resources within the hosting SCL. The “scl” 

resource stores information related to SCLs residing on other M2M 

machines after successful mutual authentication. The “application” 

resource stores information about the application after a successful 

registration on the hosting SCL. The “container” resource acts as a 

mediator for data buffering to enable data exchange between 

applications and SCLs. The “contentInstance” resource represents a 

data instance in the container. The “accessRight” resource manages 

permissions and permissions holders to limit and protect the access to 

the resource tree structure. The “group” resource enhances resources 

tree operations by adding the grouping feature. The “subscription” 

resource allows subscribers to receive asynchronous notification 

when an event happens such as the reception of new sensor event or 

the creation, update, or delete of a resource. The “announced” 

resource contains a partial representation of a resource in a remote 

SCL to simplify discovery request on distributed SCLs. The 

“discovery” resource acts as a search engine for resources. The 

collection resource groups common resources together. 

E.  The OM2M project 
 

The OM2M project [25] provides an open source implementation 

of the horizontal service platform for M2M interoperability based on 

the ETSI-M2M standard. OM2M follows a RESTful architecture 

style with open interfaces to enable developing services and 

applications independently of the underlying network. It provides a 

simple API based on simple primitive procedures to enable machines 

authentication, resources discovery, applications registration, 

containers management, synchronous and asynchronous 

communications, access rights authorization, groups organisation, re-

targeting, etc. OM2M proposes a modular architecture running on top 

of an OSGi layer, making it highly extensible via plugins. It supports 

multiple protocol bindings such as HTTP and CoAP. The OMA-DM 

protocol is used as a remote entity management service to perform 

efficient software updates and life-cycle managements on constraint 

devices. The TLS-PSK protocol is considered to enable secure 

communication based on pre-shared keys, and various interworking 

proxies are provided to enable seamless communication with legacy 

devices such as Zigbee and Phidgets technologies. OM2M has also 

been accepted as an open source project by the Eclipse Foundation in 

the IoT working group [26]. 

 

Furthermore, The XMPP-based experimental Interworking Proxy 

implementation discussed later in this paper is built to work together 

with the OM2M implementation of the ETSI M2M reference 

platform. 

F.  oneM2M 
 

ETSI is one of the main contributors to oneM2M, which contains 

members from already mentioned affiliations ETSI and TIA, but also 

industrial and research organizations from Open Mobile Alliance 

(OMA), Association of Radio Industries and Businesses (ARIB), 

Alliance for Telecommunications Industry Solutions (ATIS), China 

Communications Standards Association (CCSA), and 

Telecommunications Technology Association (TTA) of Korea, and 

Telecommunication Technology Committee (TTC) of Japan. 

oneM2M shall prepare, approve and maintain the necessary set of 

specifications and reports, e.g., for use cases and requirements, 

service architecture, open interfaces and protocols, interoperability, 

identification and naming of devices and applications and 

management aspects. Current specifications of oneM2M can be found 

from the oneM2M website [24]. 

G.  IEEE’s M2M standardization 
 

It could be said that IEEE has done M2M related standardization at 

lower level than ETSI and other members of oneM2M. IEEE already 

provides several wired and wireless communication standards for the 

purpose of enabling communication between M2M devices, but is 

still developing new ones and enhancing the existing ones to support 

M2M and IoT communications even further. For example, IEEE 

802.11ah standardization task group is developing Wireless LAN 

standard suitable for M2M and IoT communication by creating large 

group of stations that cooperate to share air medium while 

minimizing energy consumption. Another IEEE’s M2M related 

standardization activity is IEEE 1451 standard family. IEEE 1451 

describes communication for the smallest devices for low 

communication range.  

 
IEEE 1451.x standards specify a physical interface for data 

interconnection (PHY), which might use mixed mode analog and 

digital [27], digital point-to-point transducer to microprocessor [28], 

distributed multidrop bus [29], RFID [30], or Wireless [31] 

communication. Network Capable Application Processor (NCAP) 

module includes Common Functionality and Transducer Electronic 

Data Sheets (TEDS) defined in [32], and Smart Transducer Object 

Model [33]. TEDS is a set of electronic data in a standardized format 

specifying type, identification information, interfaces, technical 

information such as sensitivity, calibration, correction data, bridge 

type, manufacturer-related information, excitation, etc. of the 

transducer. TEDS is a memory device attached to the transducer 

(sensor or actuator). There are TEDS for each 1451.x communication 

mechanisms. 

 

Purpose of IEEE project P21451-1-4 - Standards for a Smart 

Transducer Interface for Sensors, Actuators, and Devices - eXtensible 

Messaging and Presence Protocol (XMPP) for Networked Device 

Communication is to define a method for transporting IEEE 1451 

messages over a network using XMPP to establish session initiation, 

secure communication, and characteristic identification between 

networked client and server devices using device Meta identification 

information based on the IEEE 1451 Transducer Electronic Data 

Sheets (TEDs). [34]. Furthermore, the ISO/IEC/IEEE P21451-1-4 

will use a JID (EUI-64), an Universal Unique IDentifier (UUID), 

which is defined in ISO 29161 Automatic Identification for the 

Internet of Things. ISO 29161 is developed by ISO JTC1 SG31 WG2 

Automatic Identification & Data Capture and TC122 Internet of 

Things (IoT). 

Third IEEE’s M2M related standardization activity is done in 

wireless broadband IEEE 802.16 family (commercialized under the 

name WiMAX). IEEE 802.16’s M2M Task Group [35] has defined 

802.16p [36] that describe how to enhance WirelessMAN-OFDMA 

Air Interface for broadband wireless access systems to enable support 

for modern M2M applications. 

III. THE EXTENSIBLE MESSAGING AND 

PRESENCE PROTOCOL (XMPP) 
 

XMPP is a set of open XML technologies for presence and real-

time communication originally created for near-real-time messaging, 

presence, and request-response services [37], [38]. XMPP is 

described in [39],[40],[41], and updated by several Internet Drafts 

published by Internet Engineering Task Force (IETF) and by XMPP 

extension protocols (XEPs) published by the XMPP Standards 

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 167



Foundation (XSF). In this chapter we will present the main features 

and architecture of XMPP technology. Also, as its name suggests, 

one of the key features of XMPP stems from its extensibility and we 

will therefore also discuss some of the most relevant XMPP 

extensions herein. 

 

XMPP has gained quite a momentum recently. Although, it has 

been awhile since XMPP technology (or as it was called back then, 

Jabber) was first invented and released in 1998-1999, today the 

technology itself is alive and doing better than ever. After publishing 

the core XMPP specification in 2004 as RFCs, XMPP technology got 

adopted widely by bigger and smaller companies. For example, in 

August 2005 Google Talk IM and Voice over Internet Protocol 

(VoIP) services were released both based on XMPP technology. 

Significant companies using XMPP in their products include Apple, 

Cisco, Google, IBM, Nokia and Sun, to name a few. Today’s trendy 

instant messaging service WhatsApp, which is also based on XMPP 

technology, although customized to fit their needs, now has over 350 

million monthly users. XMPP is also utilized as a basis for many 

other commercial products and solutions, and is used, e.g., in gaming, 

geolocation and cloud computing [37], but also in sensing of campus 

areas [42], smart cities [43] and home environments [44],[12],[45], 

public transport [46], disaster management [47],[48], to retrieve 

Internet Abuse handling related information, in smart grids [49] and 

cyber security exercises, and in medical instruments and systems to 

monitor patients [6],[50],[51]. The potential of the XMPP technology 

is huge and, as we can see, some of the biggest companies are 

utilizing that potential on their top end products and services. 

Although, the examples given above are mostly related to the 

interaction between humans, XMPP’s potential also for the M2M 

communication should not be ignored. Same kind of operations are 

needed for both human-to-human and machine-to-machine 

communications but the M2M systems need to be more automated, 

robust and smart. Regardless, the XMPP technology offers a great 

platform to implement M2M systems over it. There are already many 

communities, researchers or research groups who are studying the 

XMPP’s potential on applications such as M2M or IoT fields [52], 

[10], [42], [46], [6], [53], [54], [7], [55], [56], [9], [57], [58], [59], 

[60], [61], [62]. 

 

One of these efforts is published by R. Klauck and M. Kirsche on 

their article “Chatty things - Making the Internet of Things readily 

usable for the masses with XMPP” [53]. Many other parties have 

been discovering the untapped potential of XMPP for the M2M 

world, strengthening the decision to employ and investigate the 

potential of XMPP within the context of M2M. 

A. XMPP Features and the distributed client-server 

architecture 
 

The Extensible Messaging and Presence Protocol (XMPP) is a 

communication protocol based on the Extensible Markup Language 

(XML) providing exchange of structured yet extensible data between 

network entities in near-real-time. XMPP has similarities to other 

application-layer protocols like SMTP. In these architectures, a client 

with a unique name communicates with another client with a unique 

name through an associated server. Each client implements the client 

form of the protocol, where the server provides routing capability. 

Servers can also communicate for purposes of routing between 

domains. Farther, gateways can exist for purposes of translation 

between foreign messaging domains and protocols. As an extensible 

protocol, XMPP is an ideal backbone protocol to provide universal 

connectivity among different endpoint protocols. The XMPP gateway 

permits the termination of a given client-to-server (C2S) session and 

the initiation of a new session to the target endpoint protocol.                

Gateways are most often used in this context to translate between 

instant messaging (IM) protocols (for example, XMPP to Internet 

Relay Chat) or translate XMPP and other protocols, such as 

Bluetooth to control Lego NXT and Wii Remote [10]. 

 

The Extensible Messaging and Presence Protocol has been 

developed to enable message oriented communication services 

applicable in the internet context. XMPP can be seen as a 

communication overlay protocol as it operates on top of TCP/IP. The 

XMPP communication architecture is based on decentralized client-

server model with also server-to-server (S2S) and serverless 

communication capabilities which can optionally be used. Each 

XMPP client has an account hosted by a XMPP server, and the client 

can be addressed by unique Jabber ID (JID). A client connects to the 

server to send and receive messages, to enable client-to-client (C2C) 

messaging over multiple domains the servers are responsible of 

routing messages to each other and all the way to the intended 

receiving client. Originally XMPP was developed for human to 

human, instant messaging (IM), communications; however, it can 

also be quite easily applied for M2M communications and many 

other tasks. One of the core features of the XMPP is the capability to 

handle presence information of the networked entities. Presence 

messages are used to detect the availability of each client. The 

information about client’s presence is shared only with XMPP users 

that are in the roster/address book of sending client. 

 

XMPP  is essentially based on distributed client-server 

architecture, using at most three hops on the communication path 

from one client to another client. Architecture is presented in Fig. 5, 

where line number 1 presents C2S communication, line 2 presents 

S2S communication and line 3 presents direct C2C communication, 

for example a VoIP call that is negotiated using XMPP (that has been 

configured through servers in domains X and Z, but does not use 

XMPP for transmitting the actual VoIP data). 

 

 

 
Fig. 5. Distributed client-server architecture of XMPP. 

Of course, other types of XMPP communication also exist, some of 

which do not require servers at all, such as the one defined in XEP-

0174: Serverless Messaging [63]. 
 

B.  XMPP’s publish-subscribe architecture 
 

XMPP offers publish-subscribe (“pubsub”) functionality [64], 

visualized in Fig. 6, so polling is not always necessarily required 

between clients and services to disseminate information. Continuous 

polling can be seen as a wasteful operation in the case of small 

embedded M2M devices for example. The idea of publish-subscribe 

is simple, but the specification itself is larger:  

 

 An entity publishes information to a node at a publish-subscribe 

service.  

 The pubsub service pushes a notification to all entities that are 

authorized to learn about the published information. 

168 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014



 
 

Fig. 6. Publish-subscribe functionality in its basic form and the 

principle of using pubsub for aggregators. 

 

 

The specification for pubsub [64] defines several messages, such as 

request, success, and error messages for subscribing, unsubscribing 

and publishing, as also for configuring subscription options and 

retrieving items from node. It also defines messages for example for 

creating, configuring, deleting and managing nodes. In XMPP pubsub 

offers possibilities to create versatile configurations. An XMPP 

account / client can act as both publisher and subscriber. Pubsub 

nodes may have none, one or several publishers and subscribers. 

Some of the subscribers may act as aggregators, as seen also in Fig. 

6, that collect information from several pubsub nodes, analyse, 

combine and sophisticate the information and publish it to other 

pubsub nodes.  

Because the number of sensors in M2M and IoT systems can 

become immense, aggregators are needed to make the information 

more understandable.  

 

In M2M and IoT systems, pubsub can be used for several basic 

operations. One of the most common one is to publish sensor 

information to a pubsub node, and provide it from there to all 

subscribers. Sensors and actuators can work as both publishers and 

subscribers, and it is possible to read, e.g., configuration files from 

pubsub nodes to sensor devices. Using pubsub and adding none 

contacts for devices, the amount of the traffic going between the 

sensor device and its server can be decreased with the approach 

presented in Fig. 7.   

 

1. User starts the device. 

2. Device logins, e.g., by using the manufacturer’s preconfigured 

XMPP credentials. 

3. Device subscribes to a pubsub node preconfigured by the 

manufacturer. 

4. Owner or user of the device logins to the manufacturer’s 

webpage and gives wanted credentials of the device. 

5. The manufacturer publishes these to the preconfigured pubsub 

node. 

6. An authorized device gets new credentials. 

 
Fig 7. Example of using pubsub for device configuration. 

 

7. The credentials in the device are changed. The XMPP client 

using the manufacturer’s preconfigured account logs out. New 

credentials are used. If there is space left in the memory, it is 

possible to store the manufacturer’s preconfigured credentials to 

be used later as backup mechanism for logins. 

8. The device logins using the new credentials and discovers 

certain pubsub node used to store configuration information, and 

subscribes to it. Configuration information might include a new 

password, describe task to be executed, or provide names of 

pubsub nodes to be created and to publish information into. This 

is presented as arrow A. in Fig. 7. Notice that these pubsub 

nodes are not necessarily in domain U. 

9. The device starts running based on the received configuration. 

10. If the item in configuration pubsub node is updated, the device 

gets new configurations. The device may get this newest item 

also every login time. 

 
Problem in such an approach is that the user must rely on the 

manufacturer and that the manufacturer does not use provided 

credentials maliciously before they have been changed, that is done 

after step 8. Notice that in the example only core XMPP and pubsub 

[60] are used to transmit all the information between XMPP clients 

and server. It would be possible, to use mechanisms described in [60] 

to configure credentials for device in step 2. It would be possible to 

publish configuration commands (such as ad-hoc [65], Jabber-RPC 

[66], <set> command of XEP-0325 [59]) to a pubsub node. This 

replaces an approach of embedding commands to <message> or <iq> 

stanzas sent directly to the device. When the device (sensor or 

actuator) subscribes to this pubsub node, it receives the command and 

performs or starts performing the wanted action or actions. This is 

especially useful if the full JID of the device is not known, and 

provides transmitting configurations simultaneously to thousands of 

devices using only one pubsub node.  

 

Details of security of the pubsub architecture are further described 

in the section “XMPP security” of this paper. 

C. Applicability of XMPP for M2M purposes 

 
XMPP core technology already offers a variety of key 

functionalities which are used for enabling reliable near real-time and 

secure communication between connected clients and servers. Some 

of these features and characteristics of XMPP are directly extremely 

useful for M2M and pervasive applications, such as: 

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 169



 presence information is utilized for providing information about 

connecting and disconnecting entities along with information 

about changes in the services provided by the entities 

 secure messaging (TLS): TLS is used to encrypt message 

channels from M2M clients to back-end servers. 

 overlay communication over IP: The Internet Protocol (IP) is 

widely used protocol, not only in Internet, but also in closed 

networks. There are implementations that support both IPv4 and 

IPv6 protocols. 

 near real-time: XMPP is based on XML streams that are direct 

connections between clients and servers. This allows messages 

to pass the system in minimum latency. 

 authentication is essential to make the M2M overlay secure and 

available to only trusted entities 

 contact list of XMPP account is stored in server so clients need 

minimal amount of persistent memory. 

 service discovery is critical in order to connect entities providing 

services to entities requiring services. Service discovery [67] 

defines the basic service discovery mechanism of XMPP. It 

defines three kinds of information which need to be discovered 

about an entity: 

o its basic identity (type and/or category) 

o the features it offers and protocols it supports 

o any additional items associated with the entity, whether or 

not they are addressable as JIDs 
 

The basic service discovery mechanism has also been extended 

with functionalities (XEP-0128) that enable extensions such as 

description for multi-user chat rooms, room subjects, number of 

occupants in the room and the JID of the room, using Data Forms 

(XEP-0004) and Field Standardization for Data Forms (XEP-0068) 

specs as building blocks. As explained in the [68], an XMPP client or 

other entity may need to discover services external to the XMPP 

network in order to complete certain XMPP-related use cases. An 

XMPP entity can discover external services in several ways, 

including: 

1. The service is specified in the application's default settings. 

2. The service is manually added into the application's 

configuration by a human user. 

3. The service is discovered via non-XMPP service discovery 

protocols, such as: 

○ DNS SRV records, RFC 2782  

○ Service Location Protocol (SLP), RFC 2608  

○ The Dynamic Delegation Discovery System (DDDS), 

RFC 3401  

○ The NAPTR profile of DDDS, RFC 3403  

○ The S-NAPTR profile of DDDS, RFC 3958  

○ The U-NAPTR profile of DDDS, RFC 4848  

4. Using protocol defined in [68] as a fall-back when the relevant 

service discovery technologies are not available to the XMPP 

entities involved. 

 

As described in section “IEEE’s M2M Standardization”, IEEE has 

defined how to transmit IEEE 1451 sensor and actuator information 

with XMPP. 

 

Another example of XMPP’s potential for M2M applications is 

Blueforce’s M2M Cloud Service [69], which takes input from 

multiple, and disparate, unattended ground sensors (UGS) and 

normalizes the output into a standards-based information flow that 

can be viewed inside of Blueforce Tactical, Blueforce Command 

Center Common Operational Picture (COP), or any XMPP standards-

based client. UGS data may be overlayed alongside of other human-

based assets as well as shared in real-time on Geospatial Information 

Systems using our dynamic KML output. This cloud agent has been 

built from the ground up and can support thousands of subscribed 

endpoints as well as hundreds of inbound sources and can be hosted 

on own infrastructure or different cloud service providers. Blueforce 

mentions “Inter-Agency Sensor Sharing”, “Technical Collection”, 

“Surveillance and Reconnaissance”, “Critical Infrastructure 

Protection”, “Force Protection”, and “WMD Monitoring” as use 

cases.  

 

XMPP provides a general framework for messaging across a 

network. This has a multitude of applications beyond traditional IM 

and the distribution of data. A close application to IM is multi-party 

messaging or the development of multi-user chat rooms [70]. With 

group communication, features similar to micro-blogging as provided 

by Twitter can be implemented. But text is not only data that can be 

transmitted through XMPP. Other forms of communication could 

include audio, image, and video data. XMPP provides a solid base for 

both discovery of services on a network and advertisement of 

services and capabilities. XMPP offers a crucial set of features for 

online games, including authentication, presence information, chat 

and extensible near-real-time communication of game state 

information. XMPP has been used in research laboratories but also in 

commercial products for M2M communication and remote 

management of devices in different domains such as smart grids or 

infrastructure monitoring. Also, XMPP is a protocol of new area of 

cloud computing. Cloud computing and storage rely on various levels 

and forms of communication, including not only messaging between 

systems to relay state but also migration of larger objects, such as 

storage or virtual machines. XMPP can be applied at a variety of 

levels and is ideal as a middleware protocol. 
 

One of the main reasons for choosing XMPP as a basis for our M2M-

related experiments was that it already offered us directly most the 

basic functionality that were needed and that it was designed from the 

ground up to be easily customizable and extensible. The extensibility 

granted us the opportunity to implement needed modifications to the 

system and for our own data formats to transfer appropriate data 

between entities without “re-inventing the wheel”. There exist only 

two types of basic connections in XMPP network: client to server and 

server to server connections, although serverless messaging can also 

be accomplished by using appropriate XMPP extension [63]. Each 

connection is a XML stream through a TCP socket as specified in 

RFC 6120 [39]. Client to server connections are persistent but server 

to server connections can be established as need basis. 

D. XMPP Security 
 

D.1 Encryption 
XMPP has supported per-hop channel encryption using Transport 

Layer Security (TLS) through a STARTTLS upgrade mechanism. 

Per-hop encryption using TLS can be used to protect only messages 

transmitted between the client and the server, or messages transmitted 

between servers, but not inside servers that do the routing. TLS has 

been used mainly in C2S communication, and usually S2S 

communications are not encrypted. Mechanisms such as OpenPGP, 

Off-the-Record (OTR), TLS, S/MIME, SIGMA, XML encryption, 

and CMS with JOSE, to enable end-to-end encryption between two 

clients exist, but none of them has been deployed widely [71]. 
 

D.2 Pubsub security 
XMPP pubsub and access models are described in XEP-0060 [64] 

and here in Table 1. 
 

TABLE I. 
NODE ACCESS MODELS OF XMPP PUBSUB 

Access 

Model 

Description 

Open Any entity may subscribe to the node (i.e., without 

170 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014



the necessity for subscription approval) and any entity 

may retrieve items from the node (i.e., without being 

subscribed). Pubsub XEP [XEP-0060] describes that 

this should be the default access model for generic 

pubsub services. It should be noted that such generic 

pubsub services must not publish any confidential 

data if the service itself is public to the Internet. 

Confidential data may only be published if the 

pubsub server is trusted and isolated. 

Presence Any entity with a subscription of type "from" or 

"both" may subscribe to the node and retrieve items 

from the node; this access model applies mainly to 

instant messaging systems. 

Roster Any entity in the specified roster group(s) may 

subscribe to the node and retrieve items from the 

node; this access model applies mainly to instant 

messaging systems. 

Authorize The node owner must approve all subscription 

requests, and only subscribers may retrieve items 

from the node. 

Whitelist An entity may subscribe or retrieve items only if on a 

whitelist managed by the node owner. The node 

owner MUST automatically be on the whitelist. In 

order to add entities to the whitelist, the node owner 

SHOULD use the protocol specified in the Manage 

Affiliated Entities section of this document, 

specifically by setting the affiliation to "member". 

 

 

In XMPP pubsub [64], a publisher can select who (XMPP entities) 

can subscribe to the published information. For example, the 

publisher can give access only to entities in its roster, only to certain 

entities in a whitelist, to all, or require an authorization from certain 

entities. When the information is private, it should be exercised care 

in approving subscription requests. The server must allow only 

authorized entities to complete “owner use case” actions such as 

create, configure, and delete node, request default node configuration 

options, purge all node items, manage subscription requests, process 

pending subscription requests, and manage subscriptions and 

affiliations. Manual authorization is done also when XMPP entities 

want to subscribe to presence information. 

 

Access control of pubsub can be done remotely and/or externally, 

e.g., one possibility is to define a constrained device to create only 

private pubsub nodes to pubsub service. The private access control 

rule (access model) would be changed to a wanted one afterwards 

from unconstrained devices (e.g., using laptops). Changing of the 

access control rules would have to be done either using the same JID 

as the publisher, or using an administrator account. In XMPP, it is 

possible to login using the same XMPP account from different 

locations, only the resource part of the JID changes. XMPP’s pubsub 

enables implementation of more complex publishing and subscription 

modes. For example, it enables subscribing to nodes temporarily, i.e., 

only for as long as the subscriber is online in its current presence 

session. In addition, it is possible to deliver event notifications only 

when the subscriber is online. XMPP’s pubsub offers also time-based 

subscriptions aka leases that enable expiring old or stale 

subscriptions. It also offers error message to tell the subscriber, e.g., 

that the subscriber is not in the customer database or the customer’s 

account is not paid up. This could be used in commercial 

deployments [64].  

D.3 Sensitivity level 
A security label aka a confidentiality label, is a structured 

representation of the sensitivity of a piece of information and it is 

used in conjunction with a clearance, a structured representation of 

what information sensitivities a person (or other entity) is authorized 

to access, and a security policy to control access to each piece of 

information. If such information would be transmitted using XMPP’s 

pubsub, a mechanism presented in XEP-0314 could be used, where 

XEP-0314 defines an extension that allows for the use of security 

labels in XMPP’s pubsub. 

 

D.4 Presence leak 
There is a risk that presence information is leaked when publishing 

items, but this risk can be mitigated, e.g., by removing publisher 

related information from the pubsub nodes. XMPP might leak 

presence information in other use cases. In addition to access control 

(access model) mechanism of pubsub, XMPP offers mechanisms to 

handle persistent storage of published information that could be used 

in M2M communication, e.g., to store information that is private to 

M2M overlay entities and/or their owners. This is described in XEP-

0223: Persistent Storage of Private Data via PubSub. 

E. Relevant informational, final and draft standards XMPP 

extensions for M2M 
 

This section lists relevant XEP standards that are informational or 

have final or draft status. Designers and engineers planning to apply 

XMPP in M2M and IoT applications would do well to be aware of 

the XEPs listed the following: 

 XEP-0009: Jabber-RPC [66] defines how to transport XML-

RPC encoded requests and responses between two XMPP 

entities.  

 XEP-0030: Service Discovery [67] defines how to discover 

information about other XMPP entities. Two kinds of 

information can be discovered, the identity and capabilities of an 

entity, including the protocols and features it supports, and the 

items associated with an entity. Service discovery has been used 

in most of the current IoT and M2M systems which are based on 

XMPP. 

 XEP-0045: Multi-User Chat [70] defines an XMPP protocol 

extension for multi-user text chat, whereby multiple XMPP 

users can exchange messages in the context of a room or 

channel. It has been used for IoT and M2M systems, as 

described in [10], [48],[47] 

 XEP-0050: Ad-Hoc Commands [65] defines how to advertise 

and execute application-specific commands. Ad-hoc commands 

have been used, e.g., in VIRTUS M2M middleware to provide 

workflow capabilities for any structured interaction between two 

XMPP entities [6]. 

 XEP-0060: Publish-Subscribe [64] provides generic publish-

subscribe functionalities such as creating and managing nodes 

and publishing information at nodes, and subscribing to nodes. 

Pubsub is used in several XMPP based IoT and M2M systems, 

such as in [52], [10], [42] and [12] for example. 

 XEP-0080: User Location [72] defines how to communicate 

information about the current geographical or physical local of 

an entity. 

 XEP-0100: Gateway Interaction [73] defines best practises for 

interactions between Jabber clients and proxy gateways to 

legacy IM services. Even if the service behind the proxy 

gateway would not be an IM service, some described practises, 

such as ones in the Security Considerations -section apply to 

M2M systems that are using gateways to connect to several 

protocols or networks. 

 XEP-0115: Entity Capabilities [74] provides a mechanism for 

caching, and hence eliding, the disco#info requests needed to 

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 171



negotiate optional features. 

 XEP-0127: Common Alerting Protocol (CAP) Over XMPP [75] 

defines a method for sending CAP data over XMP. It is of 

course suitable only to M2M systems that are using CAP data 

for alerts and notifications. 

 XEP-0138: Stream Compression [76] provides application 

stream level compression, useful if the device TLS stack does 

not support TLS-based compression. 

 XEP-0156: Discovering Alternative XMPP Connection Methods 

[77] defines how to discover alternative methods of connecting 

to an XMPP server. It could be suitable, e.g., in sensor networks 

which do not have or cannot use TCP connectivity. 

 XEP-0174: Serverless Messaging [63] defines how to 

communicate over local or wide-area networks using the 

principles of zero-configuration networking. This XEP could be 

useful especially in local area sensor networks, which have no 

Internet connection always available. It has been used in IoT 

systems to provide possibility for sensors to communicate in 

disaster situations, as described in [47]. 

 XEP-0198: Stanza Acknowledgements [78] provides session 

resumption over TCP, enabling a client to handle the case where 

the coverage is patchy. The <r/> and <a/> elements also provide 

a keep alive facility in a small number of octets. Currently the 

name of this XEP is Stream Management. 

 XEP-0222: Persistent Storage of Public Data via PubSub [79] 

defines practices for using the XMPP’s pubsub to persistently 

store semi-public data objects such as public keys and personal 

profiles. In M2M systems this public information may be, e.g, 

public key of a sensor or an actuator. Also, Persistent Storage of 

Private Data via PubSub in XEP-0223 defines best practices for 

using the XMPP’s pubsub to persistently store private 

information. In M2M systems this private information could be 

for example client or sensor device configuration options. 

 XEP-0229: Stream Compression with LZW [80] defines how to 

use the LZW algorithm in XML stream compression. Other 

proposals for XML compression exist. 

F. Relevant currently experimental XMPP extensions and 

not accepted XEP (and older Jabber Extension Protocol) 

proposals for M2M 
 

This section lists relevant XEP and older Jabber Extension Protocol 

(JEP) standards that have experimental status or have not yet been 

accepted. Notice that listed XEPs may have major changes before 

they are final. 

 

 Smart Presence Distribution [81] compares the distribution 

strategies to cut down on server-to-server traffic. It is old, from 

2005, and haven’t got acceptance. We see that this would be 

especially useful if sensor networks in M2M systems would 

contain XMPP servers. 

 Transmitting authentication factor information using Ad-Hoc 

Commands [82] defines how, e.g., the user may authenticate 

itself and gain access to a device. 

 Sensor-Over-XMPP [61] proposal which defines a payload 

format for exchanging sensor and actuator data. XEP proposal 

mentions use cases such as power distribution metering, home 

automation, monitoring and control of heating and cooling 

systems and infrastructure monitoring. Sensor-Over-XMPP has 

been used, e.g., in large-scale campus-wide sensing and 

actuation [42]. 

 Stanza Repeaters [83] enables optimization of interdomain 

traffic that is intended for delivery to multiple recipients, using 

the concept of a stanza repeater. This could be useful, e.g., when 

configuring several M2M entities. On the other hand we see that 

similar functionalities could be implemented with pubsub [XEP-

0060]. 

 XEP-0215: External Service Discovery [68] defines how to 

discover services external to the XMPP network.  

 XEP-0322: Efficient XML Interchange (EXI) Format [84] 

describes how EXI compression can be used in XMPP networks. 

 XEP-0323: Internet of Things - Sensor Data [57] provides a 

common framework for sensor data interchange over XMPP 

networks. 

 XEP-0324: Internet of Things - Provisioning [58] describes an 

architecture for provisioning of services, access rights and user 

privileges in for the XMPP based IoT. 

 XEP-0325: Internet of Things - Control [59] describes how to 

control devices or actuators in an XMPP-based sensor network.  

 XEP-0326: Internet of Things - Concentrators [85] describes 

how to manage and get information from concentrators of 

devices over XMPP network. 

 XEP-0337: Event Logging over XMPP [86] provides common 

framework for sending event logs over XMPP network. 

 XEP-0347: Internet of Things - Discovery [60] describes 

mechanisms for installing and discovering Things in IoT. 

G. Relevant currently deferred and obsoleted XMPP 

extensions for M2M 
 

Implementing any deferred and obsoleted XEPs is not 

recommended by XSF as such, but the ones listed below include 

valuable and interesting information from the point of view of M2M 

systems. For example, XEP-0286 [87] gives guidelines to optimize 

usage of power and bandwidth in XMPP and also lists few other 

interesting and related XEPs. 

 

 XEP-0237: Roster Versioning [88] provided an extension for 

reducing the roster fetch bandwidth, in most cases reducing it to 

a simple affirmation that the client has the current roster. Today 

the XEP-0237 is incorporated into core XMPP in RFC 6121 

[40]. Approach saves not only bandwidth, but also reduces local 

storage writes. If there are only few contacts in M2M devices’ 

rosters, bandwidth usage caused by roster updates will not 

usually be a problem except in extremely resource constrained 

environments. 

 XEP-0250: C2C Authentication Using TLS [89] defines how to 

negotiate TLS extensions when using TLS for end-to-end XML 

streams between two clients. It covers X.509 certificates with 

and without CA, the use of OpenPGP, Shared Remote 

Passwords (SRP) and how to use one extension to bootstrap a 

trust relationship. XEP-0250 has been used, e.g. in [47]. 

 XEP-0255: Location Query [90] defines how to query a 

compliant server or service for information about the 

geographical or physical location of an entity. 

 XEP-0273: Stanza Interception and Filtering Technology [91] 

provides a mechanism which, amongst other things, would allow 

a presence "hush", buffering presence during certain states. 

 XEP-0286: XMPP on Mobile Devices [87] provides information 

for engineers using XMPP concerned with mobile devices 

operating in a cellular network. Similar principles can be used in 

other wireless networks to reduce resource consumption. 

IV. THE PROOF-OF-CONCEPT 

IMPLEMENTATIONS 

A.  XMPP as a communication overlay for M2M 
 

The applicability of XMPP technologies for building M2M 

systems has been evaluated within this paper by implementing a 

proof-of-concept system around an electric bicycle and its accessory 

sensors. The M2M communication overlay of this experimental 

172 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014



system has been implemented using XMPP. In, Fig. 8, an illustration 

on the overall experimental system composition can be seen. 

 

 

 
 
Fig. 8. Experimental M2M communication overlay based on XMPP. 

 

 

The experimental environment consists mainly of two parts: The 

electric bicycle and the M2M overlay. These parts are connected 

together through the M2M gateway. Additionally, proprietary 

systems could also be connected to the M2M overlay with 

appropriate M2M gateways to further expand the overall M2M 

environment. 

 

The two main parts of the environment can be broken down into 

smaller components. The components are as follows: 

 Electric bicycle 

 Bluetooth interface for bicycle electronics (motor controller) 

 Bluetooth Smart (BLE) sensors (heart rate, cycling speed and 

cycling cadence) 

 M2M Gateway software on smart phone 

 Electric bicycle user interface on smartphone 

 M2M back-end 

 Database on back-end 

 M2M Client devices with or without user interface 
 

In this experimental system the electric bicycle can be seen as an 

example of a mobile M2M device. It contains an electric motor, 

several accessory sensors and a data connection to the back-end 

server. This setup allows experiments with the sensor data usage and 

the management of electrical devices over the M2M overlay network. 

Both, static and mobile clients communicate through the back-end 

server. This creates an uniform network over different wireless and 

wired networks in various different address spaces. This uniform 

network is called the M2M overlay. In the experimental environment 

the M2M overlay is simplified as a messaging platform, using XMPP 

as the basis, that provide an uniform address space, messaging and 

presence information for the M2M clients. At this point the 

environment consists only one back-end server, hence, leaving inter-

domain communication out of the scope of this work. 

 

The sensors on the bicycle are connected to the smartphone via 

Bluetooth Smart low energy connection for delivering the sensor 

data. There is also a classic Bluetooth connection between the 

smartphone and the motor controlling electronics to enable the 

controlling of the electric motor and reading its values using the 

smart phone. At the same time the smart phone acts as a gateway 

device towards the M2M overlay network, making the gathered data 

from the electric bicycle available to other M2M entities on the M2M 

overlay. Dispatching of this data is done according to the XMPP’s 

publish-subscribe extension [64]. The XMPP-based gateway solution 

has been described more thoroughly in the next chapter. 

B. XMPP-based M2M gateway for the Android platform 
 

M2M gateways are devices or software that enables connecting 

proprietary systems to the M2M overlay network. These systems can 

consist of large number of devices or for example just one tiny 

sensor. The main point here is that the gateways allow these separate 

systems to become part of the M2M network. As the experimental 

M2M environment described herein, the M2M gateway is used to 

connect multiple Bluetooth Smart and Bluetooth classic sensors to the 

M2M overlay network. The data that the sensors provide are 

published to the M2M overlay network via the smartphone acting as 

the M2M gateway. The gateway is capable of two-way 

communication which enables sending of commands to the actuators 

from the M2M overlay network, in other words, remote controlling.  

 

The M2M gateway device in the experimental environment is an 

Android-based smartphone. Android was the preferred choice as the 

operating system on the smartphone, based on its large market share 

and Android’s openness towards application development. Using of 

Bluetooth Smart sensors on a bicycle also set some criteria for 

choosing the applicable smartphone. The official support for 

Bluetooth 4.0 was published on Android 4.3 so it was clear that the 

phone needed to run at least that version of the Android operating 

system. The first Android-based smartphone to receive update to the 

Android 4.3 was the Google Nexus 4. Naturally, it is also the 

smartphone used in the experimental system, as it was the only 

available Android smartphone officially supporting Bluetooth 4.0 at 

the time of building the system. 

 

The experimental setup has three Bluetooth Smart sensors connected 

to the M2M gateway, as seen in Fig. 8. The cycling speed and 

cadence sensors are mounted on the bicycle and the cyclist has the 

heart rate belt around his/her chest. All of these sensors use the 

Bluetooth Smart low energy communication to deliver the sensor 

information to the gateway device. Communicating with the cycling 

speed and cadence sensors is done by the Bluetooth 4.0 specification 

and its cycling speed and cadence profile specification [92]. Same 

goes with the heart rate sensor using the heart rate profile [93]. The 

Bluetooth API of Android system is utilized to implement the actual 

connection and communication between the sensors and the M2M 

gateway. The minimum API level for using the Android’s Bluetooth 

Low Energy API is the API level 18, corresponding to Android 

version 4.3. 

 

The control electronics of the electric motor uses the Bluetooth 

classic to connect to the M2M gateway. The battery voltage level, 

motor’s assistance level and motor status, on or off, are gathered from 

the control electronics and then published to the M2M network. Also 

the remote controlling of the motor is enabled to demonstrate the 

ability of two way communication. The electric motor is the actuator 

on this setup. Control commands to it can be sent from the M2M 

client entity over the M2M network, passing through the M2M 

gateway and to the control electronics which translates the commands 

to the actual analog voltage signals for the electric motor. 

The most interesting part of the implementation is the gathering of 

the sensor data and translating it to the appropriate format to be 

published on the M2M network. As the M2M overlay network uses 

XMPP as its basis, the Sensor-Over-XMPP extension [61] is used to 

format the gathered data appropriately. Basically the process is as 

simple as connecting the sensors to the phone and obtaining the 

sensed data from the sensors using the Android Bluetooth API, after 

that the data gets wrapped up inside the payload format according to 

Sensor-Over-XMPP specification and then published to the M2M 

overlay network using publish-subscribe capabilities of XMPP and its 

extensions. Other M2M entities on the network can then access the 

published data by subscribing it. The publish-subscribe functionality 

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 173



is described thoroughly on the official XMPP publish-subscribe 

extension [64]. 

 

The XMPP part of the M2M gateway has been implemented using 

aSmack version 0.8.5, XMPP client library for Android API level 18. 

The basic XMPP functions of the aSmack library are used and above 

them the custom Sensor-Over-XMPP and publish-subscribe features 

are implemented according to their extension specifications. 

C. Advanced two-factor user authentication for M2M 
 

[82] describes an authentication mechanism which defines how to 

transmit authentication factor information with ad-hoc commands 

defined in [65]. The [82] gives examples to enable two-factor 

authentication by using mechanisms to check if used XMPP account 

exists and/or if user knows or have credentials of the account, if used 

XMPP client knows Verifier's full JID, and if user of the client, the 

client, or some other entity is able to access a shared secret stored 

inside certain device, a trusted platform module (TPM) or application 

and provide it to the Verifier through the Prover during a wanted 

time-window. The current version (0.0.4) of the XEP proposal [82] 

describes transmitting a random string, a Time-Based One-time 

Password (TOTP) or a One-time pad and using them as 

authentication factors. 

 

One purpose of designing and implementing such a mechanism for 

authentication is to enable renting the electric bike and/or M2M 

Gateway without need to tell XMPP credentials used in the M2M 

Gateway to the customer. In the simplest use case, the Verifier client 

only checks that the Prover client is running in the same device, such 

as in a smartphone, as it is. After the two-factor authentication, it is 

possible to execute access control to check if the user is authorized, 

e.g., to access or use certain resource. In the use case, this resource is 

the XMPP client in M2M Gateway which, e.g., controls the motor 

and publishes events from sensors. The XEP proposal does not take a 

stance on what the resource is, so it could be, e.g., ability to create 

XMPP accounts using in-band registration defined in [94]. 

 

Prototype implementation was created with SleekXMPP [95], 

PYOTP - The Python One Time Password [96], and Python’s hashlib 

libraries. 

D. An interworking mechanism for ETSI/XMPP 

interoperability 
 

Working with XMPP alongside the ETSI SCL platform, both of 

which have been discussed earlier in this paper, gives an interesting 

and valuable opportunity to perform experiments with and study one 

of the most important aspect of modern M2M systems, cross-domain 

interoperability and interworking capabilities. After all, in M2M 

world different systems should be able to communicate and cooperate 

with each other in a meaningful manner. 

 

In this work, a proof-of-concept interworking module has been 

developed with the goal of further enhancing the interoperability of 

modern M2M systems and the various technologies used in M2M by 

bringing together the XMPP domain with the ETSI SCL –based 

system. This is approached by connecting an experimental XMPP-

based M2M domain to an up-and-running ETSI NSCL. In concrete 

terms, this is done by building an interworking client that is able to 

talk to both the XMPP –based M2M back-end server in the 

experimental M2M ecosystem and an ETSI NSCL server. The ETSI 

NSCL implementation employed in this work is a part of the OM2M 

-project, which has been presented in this paper in the previous 

chapter. The most important part of the whole Interworking Proxy 

module is the Custom Interworking Logic unit, which handles all the 

crucial translation work of the messages and message formats from 

ETSI network to XMPP network and vice versa. To summarize, the 

ETSI-XMPP Interworking Proxy packs up two different client units 

in it with the Custom Interworking Logic. Clients handle the 

communication towards the appropriate networks and the logic unit 

translates the messages so that the receiving end can understand it. 

 

The experimental implementation of the Interworking Proxy for 

XMPP / ETSI NSCL presented in this paper consists of the following 

modules, as shown in Fig. 9..: 

 Interworking Logic module 

 XMPP-Communication module 

 HTTP-Communication module 

 Interface/EventListener module 

 

 
Fig. 9. The main functional modules and their relationships within the 

Interworking Proxy implementation. 

 

The first prototype version of the IWP was designed and built to 

store information received from a XMPP domain via publish-

subscribe mechanisms into the ETSI NSCL resource tree. 

 

The XMPP-Communication module is essentially a set of XMPP-

related functionalities built on top of an XMPP client library. The 

module contains all the necessary XMPP-related functionalities for 

actions such as opening a connection to a designated XMPP-server, 

providing authorization information (username, password), logging in 

to the server, subscribing to a designated pubsub node, listening for 

incoming messages, processing and storing incoming messages and 

sending XMPP-messages. It communicates with the XMPP Server in 

a standard client-server manner as specified by the XMPP standard. 

Additionally this client also has an interface towards the Custom 

Interworking Logic unit to handle the required translation of 

messages and resources.  
 

For the Interworking Proxy implementation presented in this paper, 

the XMPP functionalities are built upon the Smack API 3.3.1 [97], 

which is a widely used open source XMPP client library, licensed 

under the Apache Software License. It is a library for the Java 

platform, and it can be embedded into any application to create 

anything from full blown XMPP clients to simple XMPP interactions, 

such as sending simple notifications. It is a convenient and functional 

library for enabling communications with XMPP servers to perform 

instant messaging and group chat, for example. The Smack library is 

currently licensed under the Open Source Apache License, which 

means that anyone can easily include the functionalities offered by it 

into any non-commercial or even commercial applications. 

 

The HTTP-Communication module handles all the communication 

to the ETSI NSCL server via HTTP-protocol. Any interchange of 

174 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014



information with the ETSI NSCL is carried out through simple GET, 

POST, PUT and DELETE Http-calls, following the Representational 

state transfer (REST) model. The M2M service architecture proposed 

by ETSI has been discussed in more detail earlier in this paper.  The 

ETSI module conforms to the ETSI specification and it 

communicates in an ETSI specified way towards the ETSI NSCL. 

This module also has the interfaces towards the Custom Interworking 

Logic unit to be able to exchange data with it. 

 

The Interworking Logic module is, as the name suggests, where 

most of the logic and "intelligence" of the implementation resides. In 

technical terms, all the other modules are allocated and employed as 

member objects within the Interworking Logic module and its 

corresponding object.  It gets input and event from the 

Interface/EventListener module and then carries out all the necessary 

processing and calls the necessary methods from the XMPP- or 

HTTP-Communication modules. The actual application "payloads" 

embedded into the ETSI specified XML-messages transmitted over 

HTTP/REST -calls, are encoded into the convenient Base64 –format 

[98]. Base64 is a binary-to-text encoding scheme with the goal of 

representing any binary data in an ASCII string format by means of 

translating the data into a radix-64 representation. Base64 encoding 

schemes are commonly applied when there is a need to encode 

various kinds of binary data that needs to be stored and transferred 

with methods that have been designed to work with textual/string -

type data. The aim is to ensure that the data remains intact without 

modification during transport. Base64 formats are quite commonly 

used in a number of applications such as email and XML-based 

applications. In the experimental Interworking Proxy implementation, 

it was decided to employ the tried and true Base64 encoder from the 

Apache Commons Codec –library [99], licensed under the Apache 

License. The Apache Commons Codec software library provides a 

time tested and reliable implementations of common encoders and 

decoders such as Base64, Hex, Phonetic, etc. It consists of a set of 

utilities and a simple framework for encoding and decoding text and 

binary data.  In general terms, the Commons is an Apache software 

project which concentrates on all sorts of reusable Java components. 

 

The trials and experiments to employ the interworking 

implementation presented here in making resources and information 

from the XMPP-domain available in the ETSI NSCL have been 

successful. The IWP, in its current form, is indeed able to read, 

process and store data received via XMPP publish subscribe and 

package and make that information readily available using the 

resource tree in the NSCL, as specified by ETSI. 

V. CONCLUDING REMARKS 
When considering the requirements for machine-to-machine 

communications and pervasive applications, interoperability with 

other systems will inevitably become one of the key issues. There are 

already dozens of existing solutions in the field already for M2M, but 

they are mostly designed to work only in a specific application 

environment with devices that conform to certain protocols and 

technologies. Scalability and end-to-end security can also be added 

among the list of key challenges. The various different application 

domains relevant to M2M communication must be taken into account 

by designing the main components and essential features to be 

general, widely applicable and flexible as much as possible. Most of 

the existing M2M systems today are tightly focused on narrow usage 

scenarios that are only relevant within certain highly specific 

application domains, though some efforts are being made towards 

global M2M standardization and cross-domain interoperability in the 

form of horizontal service platforms. 

 

In this paper we have explored the applicability of the Extensible 

Messaging and Presence Protocol (XMPP) and related technologies 

for M2M systems and pervasive applications. Based on our study and 

the experimental implementations discussed in this paper, we 

conclude that many of the requirements and challenges (also 

discussed in this paper) in such systems can be met by harnessing 

XMPP-based technology. XMPP as a technology contains already in 

its core some of the functionalities that can be seen as the key 

enablers for M2M message exchange. Furthermore, due to its 

extensible nature, many extensions exists which provide mechanisms 

and functionalities required in interoperable M2M systems. 

 

Some items that had to be left for future work include larger scale 

M2M experiments with XMPP, possibly including multiple federated 

servers, interconnected gateways, scalability tests and employing 

hardware-in-the-loop simulation techniques. Also, bringing in more 

extensive peer-to-peer functionalities, integration of more diverse 

sensor/embedded systems and experimenting with mechanisms to 

enable delay tolerant communication would be of considerable 

interest. 

VI. ACKNOWLEDGEMENTS 
This work has been partially conducted within the European joint 

research project A2Nets under ITEA2 cluster project of EUREKA 

network, to which organisations the authors of this paper wish to 

express their gratitude. 

 
REFERENCES 

 

[1] Wu, G.; Talwar, S.; Johnsson, K.; Himayat, N. & Johnson, N. D. 

(2011), 'M2M: From mobile to embedded internet.', IEEE 

Communications Magazine 49 (4) , 36-43 .  

[2] D. Katusic, A. Marcev, R. Vulas, and G. Jezic, “Machine-to-

machine: Emerging market and consequences on existing 

regulatory framework,” in Telecommunications (ConTEL), 2013 

12th International Conference on , 2013, pp. 317–324. 

[3] Lawton, G. "Machine-to-Machine Technology Gears Up for 

Growth," Computer, vol. 37, no. 9, pp. 12-15, September, 2004 

[4] Chang, Kim, Anthony Soong, Mitch Tseng, and Zhixian Xiang. 

2011. "Global Wireless Machine-to-Machine Standardization." 

IEEE Internet Computing 15, no. 2: 64-69. Academic Search 

Research & Development 

[5] Internet Protocol for Smart Objects (IPSO) Alliance’s webpage, 

URL: http://www.ipso-alliance.org/ 

[6] Conzon, D.; Bolognesi, T.; Brizzi, P.; Lotito, A.; Tomasi, R.; 

Spirito, M.A., "The VIRTUS Middleware: An XMPP Based 

Architecture for Secure IoT Communications," Computer 

Communications and Networks (ICCCN), 2012 21st 

International Conference on , vol., no., pp.1,6, July 30 2012-

Aug. 2 2012 

[7] Kusznir, J.; Cook, D.J., "Designing Lightweight Software 

Architectures for Smart Environments," Intelligent 

Environments (IE), 2010 Sixth International Conference on , 

vol., no., pp.220,224, 19-21 July 2010 

[8] Jouni Hiltunen, Mikko Ala-Louko, and Markus Taumberger, 

“Experimental Performance Evaluation of POBICOS 

Middleware for Wireless Sensor Networks,” ISRN 

Communications and Networking, vol. 2012, Article ID 180369, 

10 pages, 2012. doi:10.5402/2012/180369 

[9] Teemu Väisänen, "A Simple M2M Overlay Entity Discovery 

Protocol." ICCGI 2012, The Seventh International Multi-

Conference on Computing in the Global Information 

Technology. 2012. 

[10] Bendel, S.; Springer, T.; Schuster, D.; Schill, A.; Ackermann, 

R.; Ameling, M., "A service infrastructure for the Internet of 

Things based on XMPP," Pervasive Computing and 

Communications Workshops (PERCOM Workshops), 2013 

IEEE International Conference on , vol., no., pp.385,388, 18-22 

March 2013 

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 175

http://www.ipso-alliance.org/
http://www.ipso-alliance.org/


[11] Latvakoski, J., Hautakoski, T., Väisänen, T., Toivonen, J., 

Lappalainen, A., & Aarnipuro, T. (2009, June). Secure M2M 

service space in residential home. In Proceedings of the Fourth 

International ICST Conference on COMmunication System 

softWAre and middlewaRE (p. 10). ACM. 

[12] Walczak, D.; Wrzos, M.; Radziuk, A.; Lewandowski, B.; 

Mazurek, C., "Machine-to-Machine communication and data 

processing approach in Future Internet applications," 

Communication Systems, Networks & Digital Signal Processing 

(CSNDSP), 2012 8th International Symposium on , vol., no., 

pp.1,5, 18-20 July 2012 

[13] Latvakoski, J., Hautakoski, T., & Iivari, A. (2010). Situated 

Service Oriented Messaging for Opportunistic Networks. In 

Bioinspired Models of Network, Information, and Computing 

Systems (pp. 50-64). Springer Berlin Heidelberg. 

[14] Latvakoski, J.; Alaya, M.B.; Ganem, H.; Jubeh, B.; Iivari, A.; 

Leguay, J.; Bosch, J.M.; Granqvist, N. Towards Horizontal 

Architecture for Autonomic M2M Service Networks. Future 

Internet 2014, 6, 261-301.  

[15] Galán-Jiménez, J., & Gazo-Cervero, A. (2011). Overview and 

challenges of overlay networks: A survey. Int J Comput Sci Eng 

Surv (IJCSES), 2, 19-37. 

[16] Doval, D.; O'Mahony, D.; , "Overlay networks: A scalable 

alternative for P2P," Internet Computing, IEEE , vol.7, no.4, pp. 

79- 82, July-Aug. 2003 

[17] Niemelä, E., & Latvakoski, J. (2004, October). Survey of 

requirements and solutions for ubiquitous software. In 

Proceedings of the 3rd international conference on Mobile and 

ubiquitous multimedia (pp. 71-78). ACM. 

[18] Starsinic, M. (2010, May). System architecture challenges in the 

home M2M network. In Applications and Technology 

Conference (LISAT), 2010 Long Island Systems (pp. 1-7). IEEE. 

[19] Liu, Q., Leng, S., Mao, Y., & Zhang, Y. (2011, December). 

Optimal gateway placement in the smart grid Machine-to-

Machine networks. In GLOBECOM Workshops (GC Wkshps), 

2011 IEEE (pp. 1173-1177). IEEE. 

[20] ETSI Machine to machine communications, URL: 

http://www.etsi.org/technologies-clusters/technologies/m2m 

[21] About 3GPP, URL: http://www.3gpp.org/about-3gpp/about-

3gpp 

[22] Telecommunications Industry Association (TIA), Machine-to-

machine (M2M), URL: http://www.tiaonline.org/m2m 

[23] The Institute of Electrical and Electronics Engineers, URL: 

http://www.ieee.org 

[24] oneM2M homepage, URL: http://www.onem2m.org 

[25] (Accepted) Ben Alaya M, Banouar Y, Monteil T, Drira K. 

"OM2M: Extensible ETSI-Compliant M2M service platform 

with self-configuration capability". International Workshop on 

Recent Advances on Machine-to-Machine Communication 

(RAMCOM 2014). Hasselt, Belgium. June 2-5, 2014. 

[26] Eclipse Projects, OM2M, URL: 

http://projects.eclipse.org/projects/technology.om2m 

[27] 1451.4-2004 IEEE Standard for a Smart Transducer Interface for 

Sensors and Actuators – Mixed-Mode Communication Protocols 

& TEDS Formats 

[28] E1451.2-1997 IEEE Standard for a Smart Transducer Interface 

for Sensors and Actuators – Transducer to Microprocessor 

Communication Protocols & TEDS Formats 

[29] 1451.3-2003 IEEE Standard for a Smart Transducer Interface for 

Sensors and Actuators – Digital Communication & TEDS 

Formats for Distributed Multidrop Systems 

[30] 1451.7-2010 IEEE Standard for a Smart Transducer Interface for 

Sensors and Actuators – Transducers to Radio Frequency 

Identification (RFID) Systems Communication Protocols and 

Transducer Electronic Data Sheet Formats 

[31] 1451.5-2007 IEEE Standard for a Smart Transducer Interface for 

Sensors and Actuators – Wireless Communication Protocols & 

Transducer Electronic Data Sheet (TEDS) Formats 

[32] 1451.0-2007 IEEE Standard for a Smart Transducer Interface for 

Sensors and Actuators – Common Functions, Communication 

Protocols, and Transducer Electronic Data Sheet (TEDS) 

Formats 

[33] 1451.1-1999 IEEE Standard for a Smart Transducer Interface for 

Sensors and Actuators – Network Capable Application 

Processor Information Model 

[34] Overview of P21451-1-4 - Standard for a Smart Transducer 

Interface for Sensors, Actuators, and Devices - eXtensible 

Messaging and Presence Protocol (XMPP) for Networked 

Device Communication, URL: 

http://standards.ieee.org/develop/project/21451-1-4.html 

[35] IEEE 802.16 Machine-to-Machine (M2M) Task Group, URL: 

http://ieee802.org/16/m2m/index.html 

[36] IEEE Standard for Air Interface for Broadband Wireless Access 

Systems--Amendment 1: Enhancements to Support Machine-to-

Machine Applications," IEEE Std 802.16p-2012 (Amendment to 

IEEE Std 802.16-2012) , vol., no., pp.1,82, Oct. 8 2012 

[37] P. Saint-Andre, K. Smith, and R. Tronçon, “XMPP: The 

Definitive Guide, Building Real-Time Applications with Jabber 

Technologies”, O’Reilly, 2009 

[38] P. Saint-Andre, "XMPP: lessons learned from ten years of XML 

messaging," Communications Magazine, IEEE, vol. 47, no. 4, 

pp. 92-96, April 2009, doi: 10.1109/MCOM.2009.4907413 

[39] P. Saint-Andre, "RFC 6120: Extensible Messaging and Presence 

Protocol (XMPP): Core (2011)." URL:  

http://tools.ietf.org/html/rfc6120 

[40] P. Saint-Andre, “RFC 6121: Extensible Messaging and Presence 

Protocol (XMPP): Instant Messaging and Presence”, URL:  

http://tools.ietf.org/html/rfc6121 

[41] P. Saint-Andre, “RFC 6122: Extensible Messaging and Presence 

Protocol (XMPP): Address Format”, URL: 

http://tools.ietf.org/html/rfc6122 

[42] Anthony Rowe, Mario Berges, Gaurav Bhatia, Ethan Goldman, 

Ragunathan Rajkumar, and Lucio Soibelman. 2009. Demo 

abstract: The Sensor Andrew infrastructure for large-scale 

campus-wide sensing and actuation. In Proceedings of the 2009 

International Conference on Information Processing in Sensor 

Networks (IPSN '09). IEEE Computer Society, Washington, 

DC, USA, 415-416.  

[43] Szabo, R.; Farkas, K.; Ispany, M.; Benczur, A.A.; Batfai, N.; 

Jeszenszky, P.; Laki, S.; Vagner, A.; Kollar, L.; Sidlo, C.; 

Besenczi, R.; Smajda, M.; Kover, G.; Szincsak, T.; Kadek, T.; 

Kosa, M.; Adamko, A.; Lendak, I.; Wiandt, B.; Tomas, T.; 

Nagy, A.Z.; Feher, G., "Framework for smart city applications 

based on participatory sensing," Cognitive Infocommunications 

(CogInfoCom), 2013 IEEE 4th International Conference on , 

vol., no., pp.295,300, 2-5 Dec. 2013 

[44] Hornsby, A.; Belimpasakis, P.; Defee, I., "XMPP-based wireless 

sensor network and its integration into the extended home 

environment," Consumer Electronics, 2009. ISCE '09. IEEE 

13th International Symposium on , vol., no., pp.794,797, 25-28 

May 2009 

[45] Mong-Fong Horng; Mao-Hsiung Hung; Yi-Ting Chen; Jeng-

Shyang Pan; Wen Huang, "A new approach based on XMPP and 

OSGi technology to home automation on Web," Computer 

Information Systems and Industrial Management Applications 

(CISIM), 2010 International Conference on , vol., no., 

pp.487,490, 8-10 Oct. 2010 

[46] Szabo, R.; Farkas, K.; Wiandt, B., "Measurements of a real-time 

transit feed service architecture for mobile participatory 

sensing," Wireless Days (WD), 2013 IFIP , vol., no., pp.1,4, 13-

15 Nov. 2013 

176 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014

http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.3gpp.org/about-3gpp/about-3gpp
http://www.3gpp.org/about-3gpp/about-3gpp
http://www.tiaonline.org/m2m
http://www.tiaonline.org/m2m
http://www.ieee.org/
http://www.ieee.org/
http://www.ieee.org/
http://www.onem2m.org/
http://www.onem2m.org/
http://projects.eclipse.org/projects/technology.om2m
http://standards.ieee.org/develop/project/21451-1-4.html
http://standards.ieee.org/develop/project/21451-1-4.html
http://standards.ieee.org/develop/project/21451-1-4.html
http://ieee802.org/16/m2m/index.html
http://ieee802.org/16/m2m/index.html
http://ieee802.org/16/m2m/index.html
http://ieee802.org/16/m2m/index.html
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc6122


[47] Klauck, R.; Gaebler, J.; Kirsche, M.; Schoepke, S., "Mobile 

XMPP and cloud service collaboration: An alliance for flexible 

disaster management," Collaborative Computing: Networking, 

Applications and Worksharing (CollaborateCom), 2011 7th 

International Conference on , vol., no., pp.201,210, 15-18 Oct. 

2011 

[48] Klauck, R.; Kirsche, M., "XMPP to the rescue: Enhancing post 

disaster management and joint task force work," Pervasive 

Computing and Communications Workshops (PERCOM 

Workshops), 2012 IEEE International Conference on , vol., no., 

pp.752,757, 19-23 March 2012 

[49] Khan, A.A.; Mouftah, H.T., "Secured web services for home 

automation in smart grid environment," Electrical & Computer 

Engineering (CCECE), 2012 25th IEEE Canadian Conference 

on , vol., no., pp.1,4, April 29 2012-May 2 2012, doi: 

10.1109/CCECE.2012.6335018, URL: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6335

018&isnumber=6334811 

[50] Pawara, S.R.; Hiray, S.R., "Instant Notification System in 

Heterogeneous Sensor Network with Deployment of XMPP 

Protocol," Cloud & Ubiquitous Computing & Emerging 

Technologies (CUBE), 2013 International Conference on , vol., 

no., pp.87,92, 15-16 Nov. 2013 

[51] Abousharkh, M.; Mouftah, H., "XMPP-enabled SOA-driven 

middleware for remote patient monitoring system," Information 

Technology and e-Services (ICITeS), 2012 International 

Conference on , vol., no., pp.1,5, 24-26 March 2012 

[52] Hornsby, A.; Bail, E., "μXMPP: Lightweight implementation for 

low power operating system Contiki," Ultra Modern 

Telecommunications & Workshops, 2009. ICUMT '09. 

International Conference on , vol., no., pp.1,5, 12-14 Oct. 2009 

[53] Klauck, R.; Kirsche, M., "Chatty things - Making the Internet of 

Things readily usable for the masses with XMPP," 

Collaborative Computing: Networking, Applications and 

Worksharing (CollaborateCom), 2012 8th International 

Conference on , vol., no., pp.60,69, 14-17 Oct. 2012 

[54] Kirsche, M.; Klauck, R., "Unify to bridge gaps: Bringing XMPP 

into the Internet of Things," Pervasive Computing and 

Communications Workshops (PERCOM Workshops), 2012 

IEEE International Conference on , vol., no., pp.455,458, 19-23 

March 2012 

[55] Tolman, Anne, and Tommi Parkkila. "FM tools to ensure 

healthy performance based buildings." Facilities 27.11/12 

(2009): 469-479. 

[56] Kilpeläinen, Pekka, Rauno Heikkilä, and Tommi Parkkila. 

"Automation and wireless communication technologies in road 

rehabilitation." Proceedings of the 24th International 

Symposium on Automation and Robotics in Construction 

(ISARC). 2007. 

[57] Peter Waher, “XEP-0323: Internet of Things - Sensor Data”, 

Experimental Standard, version 0.3, 04/2014  

[58] Peter Waher, “XEP-0324: Internet of Things - Provisioning”, 

Experimental Standard, version 0.3, 05/2014  

[59] Peter Waher, “XEP-0325: Internet of Things - Control”, 

Experimental Standard, version 0.3, 04/2014  

[60] Peter Waher, Ronny Klauck, “XEP-0347: Internet of Things - 

Discovery”, Experimental Standard, version 0.1, 04/2014  

[61] Gaurav Bhatia, Anthony Rowe, Mario Berges, Charles Spirakis, 

“XEP-xxxx: Sensor-Over-XMPP”, XEP proposal, version 

0.0.20, 08/2012, URL: http://sensor.andrew.cmu.edu/xep/sox-

xep.html  

[62] Xiaoping Che; Maag, S., "A Passive Testing Approach for 

Protocols in Internet of Things," Green Computing and 

Communications (GreenCom), 2013 IEEE and Internet of 

Things (iThings/CPSCom), IEEE International Conference on 

and IEEE Cyber, Physical and Social Computing , vol., no., 

pp.678,684, 20-23 Aug. 2013 

[63] Peter Saint-Andre, “XEP-0174: Serverless Messaging”, Final 

Standard, version 2.0, 11/ 2008  

[64] Peter Millard, Peter Saint-Andre, Ralph Meijer, “XEP-0060: 

Publish-Subscribe”, Draft Standard, version 1.13, 07/2010  

[65] Matthew Miller, “XEP-0050: Ad-Hoc Commands”, Draft 

Standard, version 1.2, 06/2005  

[66] DJ Adams, “XEP-0009: Jabber-RPC”, Final Standard, version 

2.2, 11/2011  

[67] Joe Hildebrand, Peter Millard, Ryan Eatmon, Peter Saint-Andre, 

“XEP-0030: Service Discovery”, Final Standard, version 2.4, 

06/2008  

[68] Peter Saint-Andre, Sean Egan, Marcus Lundblad, “XEP-0215: 

External Service Discovery”, Experimental Standard, version 

0.6, 02/2014  

[69] Blueforce M2M Cloud Service, URL: 

http://blueforcedev.com/products/blueforce-m2m-cloud-service/ 

[70] Peter Saint-Andre, “XEP-0045: Multi-User Chat”, Draft 

Standard, version 1.25, 02/2012, URL: 

http://xmpp.org/extensions/xep-0045.html 

[71] P. Saint-Andre, “STRINT Workshop Position Paper: 

Strengthening the Extensible Messaging and Presence Protocol 

(XMPP)”, draft-saintandre-strint-workshop-xmpp-02, Internet-

Draft, January 23, 2014, URL: http://tools.ietf.org/html/draft-

saintandre-strint-workshop-xmpp-02 

[72] Joe Hildebrand, Peter Saint-Andre, “XEP-0080: User Location”, 

Draft Standard, version 1.7, 09/2009  

[73] Peter Saint-Andre, Dave Smith, “XEP: 0100: Gateway 

Interaction”, Informational, version 1.0, 10/2005  

[74] Joe Hildebrand, Peter Saint-Andre, Remko Tronçon, Jacek 

Konieczny, “XEP-0115: Entity Capabilities”, Draft Standard, 

version 1.5, 02/2008  

[75] Peter Saint-Andre, Boyd Fletcher, “XEP-0127: Common 

Alerting Protocol (CAP) Over XMPP”, Informational, version 

1.0, 12/2004  

[76] Joe Hildebrand, Peter Saint-Andre, “XEP-0138: Stream 

Compression”, Final Standard, version 2.0, 05/2009  

[77] Joe Hildebrand, Peter Saint-Andre, Lance Stout, “XEP-0156: 

Discovering Alternative XMPP Connection Methods”, Draft 

Standard, version 1.1, 01/2014  

[78] Justin Karneges, Peter Saint-Andre, Joe Hildebrand, Fabio 

Forno, Dave Cridland, Matthew Wild, “XEP-0198: Stream 

Management”, Draft Standard, version 1.3, 06/2011  

[79] Peter Saint-Andre, “XEP-0222: Persistent Storage of Public 

Data via PubSub”, Informational, version 1.0, 09/2008  

[80] Peter Saint-Andre, “XEP-0229: Stream Compression with 

LZW”, Draft Standard, version 1.0, 09/2007  

[81] Philipp Hancke, Carlo von Loesch, “JEP-xxxx: Smart Presence 

Distribution”, JEP proposal, version  0.0.4, 05/2005, URL: 

http://www.xmpp.org/extensions/inbox/smartpresence.html  

[82] Teemu Väisänen, “XEP-xxxx: Transmitting authentication 

factor information using Ad-Hoc Commands”, XEP proposal, 

version 0.0.4, 03/2014 

[83] Joe Hildebrand, Matt Yacobucci, Peter Saint-Andre, Craig Kaes, 

“XEP-xxxx: Stanza-Repeaters”, XEP proposal, version 0.0.2, 

03/2008, URL: http://xmpp.org/extensions/inbox/repeaters.html  

[84] Peter Waher, Yusuke DOI, “XEP-0322: Efficient XML 

Interchange (EXI) Format”, Experimental Standard, version 0.4, 

03/2014  

[85] Peter Waher, “XEP-0326: Internet of Things - Concentrators”, 

Experimental Standard, version 0.2, 03/2014  

[86] Peter Waher, “XEP-0337: Event Logging over XMPP”, 

Experimental Standard, version 0.1, 01/2014  

[87] Dave Cridland, “XEP-0286: XMPP on Mobile Devices”, 

Deferred Standard, version 0.1, 09/2010  

[88] Peter Saint-Andre, Dave Cridland, “XEP-0237: Roster 

Versioning”, Obsoleted Standard, version 1.3, 02/2012  

A. IIVARI et al.: HARNESSING XMPP FOR MACHINE-TO-MACHINE COMMUNICATIONS 177

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6335018&isnumber=6334811
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6335018&isnumber=6334811
http://sensor.andrew.cmu.edu/xep/sox-xep.html
http://sensor.andrew.cmu.edu/xep/sox-xep.html
http://blueforcedev.com/products/blueforce-m2m-cloud-service/
http://blueforcedev.com/products/blueforce-m2m-cloud-service/
http://blueforcedev.com/products/blueforce-m2m-cloud-service/
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html
http://tools.ietf.org/html/draft-saintandre-strint-workshop-xmpp-02
http://tools.ietf.org/html/draft-saintandre-strint-workshop-xmpp-02
http://www.xmpp.org/extensions/inbox/smartpresence.html
http://xmpp.org/extensions/inbox/repeaters.html


[89] Dirk Meyer, “XEP-0250: C2C Authentication Using TLS”, 

Deferred Standard, version 0.2, 09/2008  

[90] Helge Timenes, Simon Tennant, Ross Savage, “XEP-0255: 

Location Query”, Deferred Standard, version 0.6, 04/2009  

[91] Joe Hildebrand, Jack Moffitt, Peter Saint-Andre, “XEP-0273: 

Stanza Interception and Filtering Technology (SIFT)”, Deferred 

Standard, version 0.4, 06/2011  

[92] Bluetooth Special Interest Group, “Cycling Speed and Cadence 

Profile”, version 1.0, URL: https://www.bluetooth.org/en-

us/specification/adopted-specifications 

[93] Bluetooth Special Interest Group, “Heart Rate Profile”, version 

1.0, URL: https://www.bluetooth.org/en-

us/specification/adopted-specifications 

[94] Peter Saint-Andre, “XEP-0077: In-Band Registration”, Final 

Standard, version 2.4, 01/2012  

[95] SleekXMPP: an MIT licensed XMPP library for Python, URL: 

http://sleekxmpp.com/  

[96] PYOTP - The Python One Time Password Library, URL: 

https://github.com/nathforge/pyotp  

[97] Ignite Realtime: Smack API, URL:  

http://www.igniterealtime.org/projects/smack/ 

[98] IETF: The Base16, Base32, and Base64 Data Encodings, URL: 

http://tools.ietf.org/html/rfc4648 

[99] Apache Commons Codec, URL: 

http://commons.apache.org/proper/commons-codec/ 

 

Antti Iivari, a research scientist working for VTT 

since 2008, achieved his Master’s degree in 

telecommunication engineering from University 

of Oulu - specializing in wireless 

communications, digital signal processing, 

engineering mathematics and embedded systems. 

He has worked in several international projects 

and has experience from a variety of topics 

including bio-inspired networking, software 

development, machine-to-machine 

communication and demanding network simulations.  He has also 

worked as the leader of the M2M architecture work package in the 

ITEA2 A2Nets project. 

 

 

Teemu Väisänen was born on 11th of 

December 1980 in Sonkajärvi, Finland. 

Väisänen joined VTT Technical Research 

Centre of Finland (VTT) in May 2005 as a 

Research Trainee, graduated with a Master of 

Science in Technology degree in Information 

Engineering, Embedded Systems, the 

University of Oulu in September 2006, and 

started his appointment as a Research 

Scientist at VTT, Oulu, Finland in October 2006. Topic of his thesis 

was “Security of a VoIP call in Hybrid Mobile Ad Hoc Network”. 

His work as a research scientist consists different topics of 

information and cyber security. Väisänen worked as a voluntary 

Safety Expert of VTT, in Safer Internet Day (SID) project led by 

Finnish Communications Regulatory Authority 2006-2012 and since 

2013 as one of VTT’s voluntary Mediataitokummi in Media 

Literature School project led by the National Audiovisual Institute (of 

Finland). Currently Väisänen is studying for Ph.D. at the Department 

of Computer Science and Engineering at the University of Oulu and 

working for the Finnish Defence Forces as Researcher in the NATO 

Cooperative Cyber Defence Centre of Excellence (NATO CCD 

COE) in Tallinn, Estonia. His current research interests include cyber 

security, Internet of Things, privacy and anti-forensics. 

 

 

 

Mahdi Ben Alaya is a Ph.D student at 

LAAS-CNRS laboratory in Toulouse, 

France. He has been awarded a master 

diploma in artificial intelligence and 

decision, and received an engineering 

diploma in computer science from the 

National School of Computer Science of 

Tunisia (NSCS). His research addresses 

Machine-to-Machine (M2M) 

interoperability, self-management of M2M based on Autonomic 

Computing (AC) paradigm, and routing optimization based on 

Information Centric Networking (ICN). He is an Expert of ETSI 

M2M and OneM2M standards for a Horizontal M2M architecture. He 

has been involved in the Europeans projects ITEA2-USENET and 

ITEA2-A2NETS. He is the co-founder of the open source Eclipse 

project OM2M (om2m.org) providing a full ETSI-Compliant M2M 

service platform. 

 

 

Tero Riipinen, a former research scientist who 

worked for VTT during the period of 2009-

2014, achieved his Master’s degree in 

information processing science from 

University of Oulu while specializing in 

software engineering and digital media. During 

his time at VTT, he has worked in several 

large international research projects. Topics he 

is passionate about include software 

development, machine-to-machine communication, data 

visualization, user interfaces and game development. 

 
 

Thierry Monteil is assistant professor in 

computer science since 1998 at INSA 

Toulouse and researcher at LAAS-CNRS. He 

received the Engineering degrees in 

Computer Science and applied mathematics 

from ENSEEIHT in 1992. He had a 

Doctorate in parallel computing in 1996 and 

a HDR degree in 2010. He works on parallel 

computing middleware (LANDA parallel 

environment), Grid resources management (AROMA project), 

computer and network modeling, load balancing with prediction 

models, autonomous policies to improve performance on distributed 

applications, parallelization of large electromagnetic simulation and 

autonomic middleware, and machine-to-machine architecture. He has 

managed a SUN microsystems center of excellence in the field of 

grid and cluster for network applications and a Cisco academy. Since 

2011, he coordinates the industrial SOP project funded by ANR that 

creates hybrid cloud for personal service over ADSL network under 

energy and quality of service constraints. He is member of ETSI 

(European Telecommunication Standards Institute) and the contact 

for CNRS. He also represents CNRS in the eclipse foundation and 

co-leads the OM2M open source project. He is author of more than 

50 regular and invited papers in conferences and journals. 

178 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2014

https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://sleekxmpp.com/
https://github.com/nathforge/pyotp
http://www.igniterealtime.org/projects/smack/
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://commons.apache.org/proper/commons-codec/
http://commons.apache.org/proper/commons-codec/
http://commons.apache.org/proper/commons-codec/



