

Discovery and Mash-up of Physical Resources
through a Web of Things Architecture

Luca Mainetti, Vincenzo Mighali, Luigi Patrono, and Piercosimo Rametta

Abstract— The Internet of Things has focused on new systems,
the so-called smart things, to integrate the physical world with the
virtual world by exploiting the network architecture of the
Internet. However, defining applications on top of smart things is
mainly reserved to system experts, since it requires a thorough
knowledge of hardware platforms and some specific
programming languages. Furthermore, a common infrastructure
to publish and share resource information is also needed. In this
paper, we propose a software architecture that simplifies the
visual development and execution of mash-up applications based
on smart things, exploiting Internet Web protocols and their
ubiquitous availability even on constrained devices. We have
developed a distributed architecture that allows to create and
control mash-up applications in an easy and scalable way,
without specific knowledge on both hardware and programming
languages. In addition, we have also defined a centralized public
database deployed on the Internet, to manage and share physical
resource information. The effectiveness of the proposed
framework has been tested through a real use case and
experimental results have demonstrated the validity of the whole
system.

Index Terms—CoAP, Mash-up, REST, WoT, WSN, Resource
discovery.

I. INTRODUCTION
HE recent technological innovations in the field of
microelectronics and microcontrollers have led to the

wide dissemination of the so-called smart things, that is,
physical devices with sensing and actuating capabilities, but
low computational and energy power. Generally, a quite large
number of these devices are deployed in the real world and
interconnected to create a wide range of applications for
environmental monitoring, smart cities, home and building
automation [1, 2], etc. In this perspective, some emerging
technologies such as Radio Frequency Identification (RFID)
[3] and constrained networks, first of all Wireless Sensor
Networks (WSNs), are rapidly asserting as the most important
type of distributed pervasive systems [4]. In order to improve
the communication among these devices, several low-power
protocols have been developed, such as Bluetooth, ZigBee,
IEEE 802.15.4 [5], and more recently, 6LoWPAN [6] and
Constrained Application Protocol (CoAP) [7]. However,
despite all efforts made to integrate smart things at the
network layer, embedded devices still form small and
separated islands for the application layer.

Manuscript received March 28, 2014; revised May 26, 2014.
 L. Mainetti, V. Mighali, L. Patrono and P. Rametta are with the
Department of Innovation Engineering, University of Salento, Lecce 73100,
Italy (e-mail: {luca.mainetti, vincenzo.mighali, luigi.patrono,
piercosimo.rametta}@unisalento.it).

In this context, the Internet architecture appears to be the
best model to adopt in order to integrate smart things into the
digital world, leading to the well-known Internet of Things
(IoT) concept. Furthermore, at a higher level, the Web is an
example of how a set of open and relatively simple protocols
and languages (e.g., HTTP, HTML, XML, etc.) can be used to
implement flexible systems while ensuring efficiency,
scalability, and ubiquitous availability on a wide variety of
devices, included constrained devices. These considerations
have led the IoT concept towards the Web of Things (WoT)
concept [8]. According to it, all the traditional paradigms of
the Web are adapted to integrate smart things not only at the
network layer, but also into the Web (i.e., at the application
layer). More in detail, adopting the WoT concept, the data
produced by smart devices should be directly accessible as
normal Web resources, so as providing the so-called physical
mash-up [9].

Despite these interesting perspectives, the use of smart
things in physical mash-up is hindered by some drawbacks,
mainly related to the power consumption of nodes and to the
difficulty in programming the network. While for the first
aspect there are many solutions in the literature focused on
minimizing the power consumption at various levels of the
protocol stack [10, 11, 12, 13], for the second problem, a
dominating solution has not yet emerged.

Firstly, defining capabilities and resources on each physical
device is not a trivial activity, since it implies a deep
knowledge of hardware platforms and embedded operating
systems. Secondly, developing end-user applications requires
the knowledge of some programming languages. Thirdly, it is
needed to associate some contextual information to physical
resources, so that any kind of user can easily manage, publish
and discover them regardless devices heterogeneity. Finally,
resource availability must be consistent with the execution
state of the devices on which they are defined. Several
solutions exist in literature that address separately some of the
above outlined aspects, but none of them proposes a single
software architecture for applications development/control and
for resources management, fully integrated in the Web of
Things.

In this work, a distributed Web of Things architecture has
been defined and validated (i) to support the development of
applications interacting with constrained devices and (ii) to
manage private and public resources information.

The overall architecture consists of two main components:
the Mash-up Definition Execution and Control (MaDEC)
Platform and the ResourceBase. The first component is a local

T

124 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 2, JUNE 2014

1845-6421/06/8340 © 2014 CCIS

framework for the definition, execution and control of
applications dealing with physical resources. Through its
layered architecture, the MaDEC Platform allows resources
definition on constrained devices and execution of mash-up
applications interacting with them. Moreover, it provides a
visual Integrated Development Environment (IDE) to
graphically define applications business logic and to control
their execution through visual dashboards. The IDE also
includes a Web interface to manage local resources,
associating some functional and/or spatial information to
them, and to discover public resources according to a set of
searching criteria.

The second component of the architecture, the
ResourceBase, is a centralized database deployed on the
Internet, where users can store all information regarding their
private resources. By setting a particular flag in the resource
description, owner can tag the resource as public, thus making
it usable by another user on the Internet.

The rest of the paper is organized as follows. Section II
summarizes the state-of-the-art related to solutions for
implementation of mash-up applications and for resource
discovery. Section III defines the main requirements that an
optimal WoT architecture should guarantee. An overview on
the proposed solution is presented in Section IV, whereas
Section V provides an overview about the starting
technologies. The detailed description of the proposed
architecture is given in Section VI, and in Section VII a case
study for evaluating the effectiveness of the proposed solution
is described. Conclusions and open issues are drawn in Section
VIII.

II. RELATED WORKS
Wireless Sensor and Actuator Networks are the core of

many recent IoT applications because of their ubiquity and
growing diffusion. However, the complexity in developing
applications for these platforms has been a key issue over the
last decade. In the recent years, several research works have
exploited the advent of IP technologies for WSNs [14], and
they have taken advantage of the development of very small-
footprint Web servers implementing full HTTP stack [15]. So,
these approaches are based on the Representational State
Transfer (REST) architectural paradigm [16], which allows the
manipulation of network resources by means of the basic
HTTP methods. An important concept in the REST
architecture is the possibility to access the information sources
via a Uniform Resource Identifier (URI). Sensor.Network [17]
is an example of the use of the REST paradigm for storing,
sharing, searching, and viewing data coming from
heterogeneous devices. A more intuitive tool is known as
WoTkit [18], a toolkit for the Web of Things. It is a Java Web
application that abstracts both sensors and actuators through a
single physical model consisting of a virtual sensor to which
the data coming from physical devices are associated.

In [19], the authors discuss, by illustrating two concrete
implementations, how the REST principles can be applied to
embedded constrained devices. Then, they show how RESTful
interactions can be leveraged to quickly create new mash-up

applications that integrate physical and virtual world. In [20],
authors describe their idea of Web of Things architecture and
the best-practices based on the RESTful principles.

Although the architectures and the platforms described so
far are very promising, they implement their RESTful
interfaces using the HTTP protocol at the application level. It
exploits Transmission Control Protocol (TCP) as transport
protocol, which can be quite inadequate for constrained
devices, due to computational and energy requirements and
the lack of a native server-push mechanism.

An interesting approach to address the HTTP issue is
represented by the use of CoAP. Indeed, in addition to the
HTTP features, it offers a built-in mechanism for the resources
discovery, supports the IP multicast, and natively provides a
server-push model and an asynchronous exchange of
messages. It also has a small-size header and it bases the
communication on the User Datagram Protocol (UDP) as
transport protocol. A recent solution regarding the
development of IoT applications based on CoAP is reported in
[21, 22]. A key aspect of the proposed framework is the Thin
Server [23], a light CoAP server installed on the physical
devices that exposes hardware capabilities through a RESTful
interface. Another fundamental building block is the
application server Actinium, which allows the execution of
WSN-based applications written in JavaScript.

Resource discovery, i.e. finding suitable local/remote
resources, is another important topic in this context. The
greatest part of the published works addressing this issue
basically belong to two categories: those that implement this
feature at device level, and those that provide a middleware
dealing with resources/data description and discovery.

According to the taxonomy depicted in [24], IP-based
solutions belong to the first category. They try to adapt well-
known Internet discovery mechanisms, like Domain Name
System (DNS), to constrained networks, or they exploit
protocols specifically designed for such networks, like CoAP.
Both solutions can operate in a centralized fashion (CoAP-RD
[25] and DNS-SD [26]), or in a distributed way (CoAP
Discovery and Multicast-DNS [27]) with no special nodes.
Jara et al., in [28], propose a lightweight multicast DNS
Service Directory, i.e. a set of implementation guidelines and
design recommendations in order to make suitable the use of
mDNS and DNS-SD in smart things. TRENDY [29], instead,
is a CoAP registry-based service discovery protocol with
context awareness, provided with an adaptive timer and a
grouping mechanism to minimize control overhead and energy
consumption. The self-configuration mechanism, proposed in
[30], combines CoAP with DNS in order to address
constrained nodes with user-friendly fully qualified domain
names. This makes resources globally discoverable and
accessible from any Internet-connected client, by means of
IPv6 addresses or DNS names. Gramegna et al. take a step
further and in [31] propose some CoAP extensions to allow
semantic annotation of resources with respect to a reference
ontology, in order to provide resources discovery and ranking
based on non-standard inferences. All of these works, despite
their efficacy, require that all nodes in the networks are aware

L. MAINETTI et al.: DISCOVERY AND MASH-UP OF PHYSICAL RESOURCES THROUGH A WEB OF THINGS 125

of the discovery mechanisms, so this implies computational
overhead on devices and additional communications among
them.

An alternative approach is to build a middleware-based
discovery architecture, where resource owners can actively
decide which resources can be shared with others. Sensor-
Cloud Infrastructure [32] is one of the first examples of Cloud
platform where owners can register their physical sensors and
manage them through a virtual sensor model. Other users can
access real data provided by virtual sensors for monitoring
applications. IoTMaaS [33] is a Cloud-based middleware that
proposes a new mash-up service model, which composes thing
models, software models, and computation resource models.
During mash-up process, these three components can be
customized depending on end-users preferences. In [34], a
layered middleware architecture, along with a method for
efficient device interoperation through the generation of a
generic device attributes structure, is presented. It proposes an
algorithm to create a hierarchical device attributes structure
and to form device clusters. This way, faster device
interoperation, efficient sensor discovery, management and
posting of sensed data can be achieved.

Other kinds of middleware architectures, in addition to
discovery capabilities, also offer the possibility to store data
generated by sensors in distributed or centralized data-stores,
in order to make it available for any application. Rao et al.
[35] propose a middleware in which owners expose their
devices in a catalogue and through which the captured data is
periodically stored in the cloud. Remote users can access this
data simply by selecting the appropriate components in the
catalogue. The drawback of such solution is the big amount of
data generated by physical devices, and thus the needs of vast
storage. Moreover, not all the data stored may actually be
required by applications, with the effect of unnecessary
communications between devices and wasted memory on
data-stores.

III. KEY FEATURES OF A WOT ARCHITECTURE
The development of IoT applications on top of constrained

devices and embedded operating systems requires specific
skills, thus, it is only accessible to experts in embedded
systems. Moreover, the management of local resources and the
discovery of remote resources, used in these applications, are
not still integrated in a complete WoT architecture, as seen in
the Section II. For this reason, the overall goal of a WoT
architecture should be to facilitate the development of IoT
applications, regardless of both the target physical technology
and the location of the physical resources. In this perspective,
the main guidelines in the design of a WoT architecture should
be:
• Low entry barrier for developers. This would allow a

wider range of developers, tech-savvy users and ordinary
end-users to foster rapid prototyping using smart things.

• High usability and ubiquity. Users should be able to
access and use smart things data and services from
everywhere, by using different kind of platforms and
systems.

df
• Capability to manage and share resources. The

architecture should allow users to associate additional
contextual information to their local resources and to
share them with other consumers on the Internet. It should
also allow to discover public resources shared by remote
users.

• Lightweight access to smart things data. This allows
creating applications in which real-world data are directly
consumed by resource-constrained devices, such as
mobile phones, without requiring high computational and
storing resources.

• Remote control of the embedded devices. The architecture
should provide a bidirectional communication channel
through which resources can be queried to retrieve
information, but also actuated to change their state.

• Low computational load to meet poor computational and
memory capabilities of the embedded devices. The
fulfillment of these principles has led to several design
choices. The most important ones are the following:

• The embedded devices must be kept free of any business
logic. They only have to expose their resources through a
common interface that abstracts hardware heterogeneities.
This way, embedded devices act as small servers,
exposing their physical resources as normal web
resources.

• The architecture core must be in charge of resources
discovery, indexing and sharing. In particular, the
management mechanism has to allow resource owners to
enrich their local resources with useful contextual
information, in order to ease the indexing and discovering
procedures.

• The architecture core must be also responsible of the
business logic execution. Mash-up applications should run
into dedicated application servers, which should take care
of data processing, communication with physical
resources and delivery of results to user interfaces.

• The mash-up functionalities of the architecture should be
supported by simple APIs. This would allow developers
to quickly deploy their applications, since they could be
able to interact with physical devices through high-level
methods. Also graphical editors could be exploited to
visually implement and interact with mash-up
applications.

IV. THE PROPOSED WOT ARCHITECTURE
The proposed WoT architecture is composed by two macro-

components: one deals with applications development and
execution, and the other deals with resources information
storage.

The Mash-up Definition Execution and Control (MaDEC)
Platform consists of a four-layered architecture, as shown in
Fig. 1.

At the highest level, the closest to the user, there is the
composition layer, which allows application development by
means of visual programming. This layer provides the user
with some graphical blocks that model the embedded devices

126 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 2, JUNE 2014

of a smart network and it allows, at run time, to interact with
the running applications through some dashboards.

It also provides the user with a Web interface to manage
local resources, associating some functional and/or spatial
information to them, and to discover public resources
according to some searching criteria. Then, at the next layer, a
2-ways Proxy Server has been defined in order to enable the
communication between the development environment (in
particular, the applications dashboards), the running
applications and the ResourceBase. Further down, the
architecture deals with monitoring the connectivity of
embedded devices and with execution of mash-up
applications: an application server is devoted to these tasks. At
the lowest level, a CoAP-based RESTful Thin Server allows
physical devices to expose their resources for the WoT
applications. This framework is deployed on a local gateway
and connected, on the one hand, directly with the WSN and,
on the other hand, with the Internet through a Local Area
Network (LAN).

In order to interact with a CoAP resource, whether local or
remote, it is sufficient to know only the URI of the resource
itself. However, a URI is often poorly significant from a user
point of view, since s/he may want to evaluate some other
information related to resources, like spatial or contextual
information, in order to choose which resource best fits her/his
application requirements. For this reason, the second
component of the proposed architecture has been introduced.

The ResourceBase is a centralized database deployed on the
Internet, which is used to store all contextual information
associated to private resources, such as type and/or location, in
addition to the URI. Owner can tag a given resource as public,
by setting a particular flag in the resource description; this
makes it usable by another consumer on the Internet, who
handles in his/her application the data coming directly from
the resource. It is worth noting that this architecture does not
deal with storing data generated by physical devices, but it
only stores metadata in order to ease remote resource
discovery.

The Fig. 2, illustrates how several instances of the MaDEC
Platform are interconnected with the ResourceBase, so
realizing a distributed architecture for discovering and
mashing-up of physical resources.

V. UNDERLYING TECHNOLOGIES
The starting point of the proposed WoT architecture is

represented by three main components that are not currently
compatible with each other, but whose features, properly
combined, are suitable to meet the requirements described in
the Section III.

A. Thin Server architecture
Thin Servers provide a low-level API that wraps the

elementary functionalities of devices, so allowing accessing
and configuring the device parameters to interact with the
physical world. This approach enables multiple concurrent
applications to interact with physical devices without the need
to reprogram IoT nodes for each application. One of the most
promising Thin Server implementations is the Erbium REST
Engine [36], which includes a comprehensive embedded
CoAP implementation for the Contiki operating system [37],
providing application level interoperability through a RESTful
interface. Erbium defines three kinds of RESTful resources
(namely RESOURCE, EVENT_RESOURCE and
PERIODIC_RESOURCE) and natively implements
publish/subscribe mechanism that, for the
PERIODIC_RESOURCE, automatically stores subscriptions
and then notifies the subscribers if a status change occurs.
Finally, in order to support the resource discovery, Erbium
creates an interface that returns a list of links, compliant with
the CoRE Link Format [38] (the ./well-known/core resource),
about resources hosted by that server.

B. Actinium Server
Actinium [21] is a novel RESTful runtime container for

scripted IoT applications and it is based on Californium, a
modular Java-based CoAP implementation. Each running
application, called Actinium App, is modeled as a resource,
which can be installed, updated, and removed exploiting a
RESTful API. The running scripts are written in JavaScript
language, which has been enhanced by adding an interface to
directly communicate with CoAP resources.

Despite Actinium seems to be extremely suitable in the IoT
context, it has some shortcomings that make it currently
immature to be used in a WoT architecture. The first issue to
address is the absence of a discovery mechanism, which is
needed by the application server in order to detect the local

Fig. 2 Several MaDEC Platform instances connected to the

ResourceBase

Fig. 1. Layered structure of the MaDEC Platform

L. MAINETTI et al.: DISCOVERY AND MASH-UP OF PHYSICAL RESOURCES THROUGH A WEB OF THINGS 127

WSN devices and their resources. Moreover, Actinium
currently lacks a specific mechanism for the management of
the server-push mode, i.e., the ability of a physical resource to
send notifications upon the occurrence of certain events.

C. The ClickScript Editor
The ClickScript project [39] defines an interpreted visual

programming language, based on JavaScript and provided by
means of a Web application, which allows non-expert users to
graphically implement applications that run in a browser. The
user can easily extend the language by defining new
components and s/he can control the execution of each script
through graphical dashboards provided by the integrated
development environment. ClickScript is a data-flow-based
interpreted programming language, in which each instruction
is evaluated at runtime: once all components of an application
are placed in the programming area and are interconnected
according to the business logic, each of them is executed only
when all input data are available.

ClickScript has no knowledge of CoAP and it is currently
not able to communicate with Actinium, since its native
purpose is far from IoT context. In addition, as said before, it
is designed so that its applications run only locally, within the
browser, and one at a time.

VI. IMPLEMENTATION DETAILS OF THE PROPOSED
ARCHITECTURE

The technologies described in the previous section are the
basis on which the proposed architecture was designed. This
section explains how the above components have been adapted
and enhanced to realize the MaDEC Platform and the
ResourceBase.

A. RESTful interface for physical devices
The Erbium implementation was adapted to the available

hardware. According to the Thin Server paradigm, in order to
read the value of the sensors, each of them was registered in
Erbium as a resource and a proper handler was defined for
each sensor. Upon receipt of a GET request coming from
client applications, the handler polls the sensor and builds the
response message using the sensor state as payload. The same
approach was used for the actuators, but, in this case, the
defined handlers are able to respond also to POST requests
sent by client applications to change actuator state. Finally, in
order to define an observable sensor on Erbium, an
EVENT_RESOURCE was implemented. At each occurrence of
the desired event, it exploits a proper handler to retrieve the
actual resource state, create the update message, and notify all
the observers.

B. MaDEC Platform core
The execution and control of mash-up applications are the

core features of the MaDEC Platform and they are mainly
accomplished by the Actinium application server. For these
purposes, Actinium was properly enhanced in order to create
an environment where application can interact with CoAP
resources placed within the local WSN or distributed over the
Internet. The MaDEC Platform, also plays an important role in

local resource discovery and in the process of resource
availability updating. The architecture is depicted in Fig. 3.

The local discovery procedure is performed by a JavaScript
application, called discover-motes, which runs at the Actinium
startup and stores the available resources in a resource
directory. In particular, it retrieves, from the border-router, the
IP addresses of the connected WSN devices and, for each of
them, it installs on Actinium a clone-application that acts as a
"proxy" for the corresponding embedded device. More in
detail, each proxy application has the same resources of the
corresponding node (sensors, actuators, etc.), so as to realize a
mapping of physical resources on the Actinium resources.
Each client application sends its requests to the proxy
applications and not directly to the embedded devices. Then,
the proxy applications have the burden to forward the requests
to physical devices, in order to get the responses and to deliver
them to the client applications. The advantage of using the
proxy applications is clear in a subscription/notification
scenario, where multiple client applications can subscribe to
the same observable resource, without affecting the limited
capabilities of the physical devices. The discover-motes
application is also responsible for motes availability check. It
periodically checks each IP address associated to the border-
router by sending a GET request to the .well-known/core
resource. If no answer is received within a predefined timeout,
the discovery application supposes that the mote is no more
available, maybe due to battery depletion or to shut down by
owner. In this case, the related proxy application is shut down
and deleted from the application server.

Finally, the structure of a generic Actinium IoT application,
called Actinium App, was reorganized in a more appropriate
way, in order to drive the mapping algorithm explained in
section VI.E. More in detail, the listing of the application
consists of the following sections:
• CODE: it contains the functional code of the objects and

the input/output sub-resources used in the application;
• INSTANCES: it contains the definition of the object

Fig. 3. MaDEC Platform implementation

128 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 2, JUNE 2014

instances used in the application;
• STATE: it defines the Status object, which aggregates the

status of each input/output component and sends it to the
application GUI;

• BODY: it contains the application logic instructions and
the execution cycle;

• APP-ROOT: it includes the handlers of the global
application resources.

C. 2-ways Proxy Server
The 2-ways Proxy Server is the middle component of the

whole architecture, since it enables communications between
the MaDEC Platform components and the ResourceBase. It
has the burden of translating requests coming from visual
dashboards into CoAP messages for the Actinium applications
and vice versa. It also translates the operations regarding the
resource management and discovery, made through the
graphical user interface, into SQL queries understandable by
the ResourceBase. The Fig. 4 summarizes the proxy features.

The proxy server is fully based on the JavaScript language,
exploiting the capabilities of the Node.js framework [40]. To
implement the CoAP side, an open-source CoAP plug-in for
Firefox, called Copper [41], was analyzed and suitably
adapted for our purposes. Particular attention was paid to the
implementation of both the blockwise messages and the
simultaneous observation of multiple observable resources.

 Regarding the WebSocket side, it was realized starting
from an open-source implementation of the WebSocket
protocol [42] for the Node.js framework. The translation
between the two sides of the proxy is carried out by exploiting
specific numerical codes included in the WebSocket request,
each of which corresponds to a specific command of the CoAP
interface of the proxy. Once the WebSocket request is
received, the proper CoAP method is invoked and the CoAP
message is created basing on the other parameters of the
WebSocket request. Then, the message is sent to the CoAP
server Actinium through an UDP socket. In the opposite
direction, once the CoAP side of the proxy server receives the
response coming from Actinium, it uses this message to create
the payload of the response for the WebSocket client. In this
way, the CoAP communication is completely transparent to
the ClickScript client.

The same pattern was followed for the SQL side of the
proxy. It is based on an open-source implementation of the
MySQL client [43] for Node.js and, once the WebSocket
request is received, the payload is translated into the proper
SQL query, and sent to the ResourceBase through a previously
instantiated TCP connection. This allows any CRUD operation
on the ResourceBase. Query results follow the opposite
direction, flowing from the ResourceBase back to the client
through the WebSocket channel. The “Availability Observer”
module, shown in Fig. 4, is the central component of the
resource availability updating mechanism and its
functionalities are explained in detail in the next section.

Finally, the proxy also provides storing capabilities,
allowing to store ClickScript files and graphical user interfaces

on the gateway file system.

D. The ResourceBase
The ResourceBase is a centralized MySQL database, with a

well-known public address, that stores all information related
to sensors and actuators owned by each WSN owner. It
contains two tables (one for Sensors and one for Actuators),
each of which consists of a number of fields regarding the
characteristics of each resource (for example name, type,
owner, if it is observable and/or public, etc.), its location
(absolute and logical), its URI and its running state. The public
field is crucial in this context; if it is set to yes, it states that the
given private resource becomes publically available and any
remote user can use it in his/her applications. The running
field also has an important role. If it is set to true, it means that
the resource is up and running, whereas, if it is set to false, it
means that the resource is not available at the moment, maybe
because the physical device is off, or the corresponding board
proxy application is not running.

Since the ResourceBase does not have the burden to store
the data produced or consumed by physical devices, a
centralized solution is suitable enough to handle all resource
metadata and to guarantee scalability and robustness.
However, if the number of stored resource were to grow
disproportionately, the theory of distribute databases would
help us by managing the tables on physically distributed
database in a transparent way respect to user.

The interaction with the ResourceBase can be mainly
divided into three phases, as explained below.

D.1 Resource registration and management
This phase takes care of creating a record in the

ResourceBase for each resource defined in the local WSN.
After the local discovery procedure accomplished by the
discover-motes application, the first time a proxy application
associated to the resource is executed, a new line is
automatically inserted into the proper table of the
ResourceBase. At this point, only some fields in the table are
set: the URI field is set with the full path of the resource (that
acts as an index, since it is globally unique) and the public
field is set to false (default for privacy purposes). At a later
moment, the resource owner can use the ClickScript
“Management” interface to add or update all the remaining

Fig. 4. 2-ways Proxy server

L. MAINETTI et al.: DISCOVERY AND MASH-UP OF PHYSICAL RESOURCES THROUGH A WEB OF THINGS 129

information in the resource record, including the value of the
public field. S/he can also manually insert a new record
independently from the automatic mechanism. It is worth
noting that resource owners can only manage the resources
they own, whether local or public.

D.2 Resource availability updating
An automatic mechanism was implemented to promptly

update the availability state of a public resource. This
functionality is carried out cooperatively by several
components of the whole architecture, as illustrated in Fig. 5.

The first component is the “notify” function in each board
proxy application. This function, when invoked, sends a
notification to the “Availability Relay” resource (discussed
later), containing the list of resources defined on the board.
When the “notify” function is invoked at proxy application
start up (case a)), it sends also a string “true” in the
notification message, to notify that all the resources are
available and running. Instead, when the application is
unloaded (case b)), the “notify” function sends a string “false”,
meaning that above resources are no longer available.

The second block is the “Availability Relay” resource. This
is a double-sided RESTful CoAP observable interface
(running on the Actinium server), which the 2-ways Proxy
Server subscribes to at start up. The “Availability Relay” acts
as a relay that gathers availability notifications from board
proxy applications and passes them to the proxy server, in a
CoAP request, as soon as they arrive.

The third component of the mechanism is the “Availability
Observer” module of the 2-ways Proxy Server. It subscribes
the proxy to the “Availability Relay” resource of the Actinium
server, and includes a callback function that is executed when
availability notifications arrive. For each resource contained in
the notification, the suitable SQL query is composed. Then it
is sent to the ResourceBase, by exploiting the MySQL side of
the 2-ways Proxy Server. The resource URI is used as index in
the database tables.

It is worth noting that the resource registration procedure
explained in Section D.1, partially overlaps with the resource
availability updating phase. In fact, the “Availability
Observer” module can discriminate if it has to send an
INSERT query to the ResourceBase (registration phase) or an
UPDATE query (availability updating phase). For the sake of
space, Fig. 5 shows the case of availability updating upon
resource registration. With this mechanism, every time a
resource is started or stopped, either by user action or due to
board (dis)connections, its availability state is immediately
reported to the ResourceBase. This way, when remote users
browse the public resources, they can be sure that the value of
the running field reflects the real execution state of the
resource. If a resource is tagged as not running at searching
time, it should not be instantiated in any application. If a
resource used in some application becomes unavailable at run-
time, instead, it should be care of the application itself to
handle this situation and properly alert the user.

D.3 Public resource discovery
Once a private resource is declared as public, it is publically

available on the Internet and any remote user can exploit it in
any application. This is done by simply searching it through
the “Discovery” Tab in the local ClickScript interface. This
tool allows the user to perform a string-matching query on the
ResourceBase by setting the proper fields value in the form.
Query results are visualized in a table format, in which only
publically available resources are shown. The interaction
between user and ResourceBase is handled by the Clickscript
GUI and the 2-ways Proxy Server.

E. Graphical interface for discovery and mash-up
The original architecture of the ClickScript application has

been widely extended in order to adapt it to the WoT context.
First of all, the execution of the applications has been
transferred on the Actinium server and it is controlled by
means of graphical dashboards. All interactions between
ClickScript and proxy server are done through a WebSocket

Fig. 5. Sequence diagram of the resource availability updating process

130 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 2, JUNE 2014

channel.
The new architecture is shown in Fig. 6. The first three layers,
on the left side, are used in the Programming phase. The
Library Layer defines the graphical and functional structure of
each ClickScript visual component, in terms of number of
inputs, outputs and configuration fields. The Data Model
Layer handles the creation of the application control flow,
concerning the data and control dependencies among involved
components. Then, the Programming Layer deals with user
interaction to visually define the structure of the application
and its dashboard. The Mapping Layer is in charge of the
implementation of the mapping algorithm, which translates the
visual script into a single JavaScript file, having the structure
introduced in Section VI.B. The GUI Layer handles user
interaction with the graphical interface during the Execution
phase. It translates user actions on application dashboard into
messages for the proxy server, and, in the opposite direction, it
displays messages coming from the server in the proper
dashboards. Finally, the Communication Layer implements a
WebSocket client to interact with the proxy server.

The new architecture has implied changes to the ClickScript
user interface. The Programming View now includes a
dedicated area for the dashboard associated to the application,
and a sidebar useful to install the script on Actinium and to
select the available local resources. Two new tabs have been
added (i) to run an application already installed on Actinium
(Instantiating View), and (ii) to graphically control one or
more applications through their dashboards (Execution View).
Moreover, one new tab has been added to manage local
resources (Management View): through several sub-tabs and
forms, a WSN owner can insert/search/update/delete
information related to his/her resources stored in the
ResourceBase. Finally, another tab (Discovery View) allows
string-matching queries in the ResourceBase to discover any
remote resource that best fits the application requirements.

New ClickScript components have been defined to allow
IoT applications implementation. Sensor, Observable Sensor
and Actuator components are used to model the physical
resources and to define their graphical behavior at runtime.

The mapping algorithm (Fig. 7) is a key component of this

new version of ClickScript. It translates the data-flow of the
visual application, defined within the Programming View, into
a sequential JavaScript file structured as an Actinium App.
The algorithm consists of three phases: parsing, component
mapping, and merging. In the parsing phase, it takes an XML-
like serialized file containing the structure of the visual script

and parses it in order to obtain a number of JavaScript objects
(scriptComponent) that wrap all the structural dependencies of
application components. During the component mapping
phase, for each scriptComponent, the JavaScript lines of code
associated to the component are generated. Finally, all code
snippets generated in the previous step are merged together to
obtain the Actinium App final listing (merging phase). The
mapping algorithm also applies to the creation of the
Configuration File template associated to the application.

VII. A PROOF-OF-CONCEPT
To validate the whole architecture, a simple temperature

controller application has been implemented. To better explain

the resource discovery mechanism, we suppose that the
scenario, modeled in Fig. 8, consists of a campus with several
buildings. Each building has its own independent Wireless
Sensor Network, reachable from the Internet through a local
gateway. In particular, the buildingB WSN contains an
external temperature sensor and the buildingA WSN contains
the other needed devices, i.e. an internal temperature sensor
and an ON/OFF actuator node that directly drives an air
conditioner. Each device runs a Thin Server and
communicates with the related network gateway. The overall
goal of this application is to keep the difference between the
external and internal temperature in a room above a user set
threshold: if this threshold is exceeded, the air conditioner is
activated until the set-point is reached.

The app runs in the Actinium server installed on the
gateway and consists of a polling cycle that, at each iteration,
reads the sensors values, computes the difference between the
two readings and compares it with the user threshold. Based
on the comparison result, the air conditioner is turned on or off
by means of the actuator node.

To save the physical actuator from unnecessary

 Fig. 7. The Mapping algorithm

 Fig. 8. Use case scenario

Fig. 6. The new ClickScript architecture

L. MAINETTI et al.: DISCOVERY AND MASH-UP OF PHYSICAL RESOURCES THROUGH A WEB OF THINGS 131

transmissions, its local application state is checked before
acting on it. The pseudo-code of the application is the
following.

period = 30 (seconds)
while (true) {

read external temperature value Text
read internal temperature value Tint
read user threshold th
compute Δ=Text-Tint
if (Δ<th) {

if (actuator = OFF) actuator = ON
} else {

if (actuator = ON) actuator = OFF
}
sleep(period)

}

As a preliminary step, we suppose that each WSN owner
has already registered his/her resources, both private and
public, to the ResourceBase, as explained in Section VI.D.

A user can visually create and control the above-mentioned
application by using the ClickScript interface on his/her
browser. S/he can create the control flow of the algorithm by
selecting the proper components from the toolbar in the
Programming View and connecting them according to their
data dependencies (Fig. 9). While the script components are
added to the programming area, the dashboard for controlling
the application is created in the lower section of the
Programming View. Once the application has been completely
defined, it can be installed on the application server Actinium.
More in detail, by clicking on the Install on server button, the
mapping algorithm is started, and then the application
JavaScript listing is sent to the server. At the same time, a

template of the application Configuration File is also created
and stored on the file-system of the proxy server, as well as
the dashboard template. After these steps, only the application
logic and the graphical dashboard are defined and stored, but
no application is actually started.

In order to execute the application, an instance must be
configured and started. These operations can be easily done in
the Instantiating View by selecting the application name from
the Installed Application drop-down menu and by filling in the
configuration form. The local resource URIs can be selected
from the Running Resources listed in the right menu, or by
querying the ResourceBase through the Management View tab
in ClickScript. For the remote resource URI, the Discovery
View tab in ClickScript must be used. In this case, for
example, user can search all running temperature sensors,
situated outside the buildingB, by setting the discovery form
as illustrated in Fig. 10. From the results table, user can copy
the URI of the chosen resource and paste it into the
configuration form.

To control the execution of an application instance, the user
can simply select its name in the Available Applications list
and click the Load UI button. This way, the application
dashboard is loaded in the Execution View, so that the user
can control the remote devices and automatically display all
updating messages (Fig. 11).

With this new version of ClickScript, two or more
applications can be controlled at the same time in the
Execution View, managing them independently of one
another. Through the Start and Stop buttons the user can
control the execution of the application, whereas with the
Manual/Automatic Mode buttons s/he can decide whether the
status of the physical devices has to be controlled manually by
the user or automatically by the business logic. Finally,
through the Close UI button the user can close the dashboard
in the Execution View without affecting the execution on
server. Indeed, the application can run autonomously even if
the user client is turned off. With the Configure button, the
application parameters, such as the polling period or the URI

 Fig. 9. Data-flow logic of the use case application

Fig. 11. Graphic control dashboard of a running application

Fig. 10. External temperature sensor discovery query and results

132 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 2, JUNE 2014

of physical resources, can be modified at runtime.

VIII. CONCLUSIONS
In this work, a distributed software architecture to discover

and mash-up physical resources in the Web of Things has been
defined and validated. The reasons behind this choice are
twofold: (i) to facilitate the management of the physical
resources of an embedded network, both in a local and in a
global scope, and (ii) to ease the creation of mash-up
applications interacting with CoAP-based resources. With the
proposed architecture, smart things owners can manage
information related to their resources, eventually sharing them
through a public centralized database. Another contribution of
this work is a distributed platform for the definition, execution
and control of mash-up applications based on CoAP resources.
This platform allows, through visual programming, the
implementation of mash-up applications for the WoT, without
having knowledge of both the embedded hardware and
specific programming languages. The proposed solution was
validated, from a functional point of view, through a simple
use case that represents only one area of applicability in which
the architecture may be employed.

The peculiar characteristic of the proposed architecture
compared to the other solutions already in the literature is
mainly represented by the composition layer of the MaDEC
Platform. Indeed, other architectures usually provide the user
with the ability to exploit a set of applications already
implemented or, however, they require high programming
skills to implement new ones. Instead, with our approach, the
graphical editor of the MaDEC Platform allows users to
autonomously implement new IoT mash-up applications.

To extend the present work, it is in plan to enhance the
resource description with a semantic annotation with respect to
a reference ontology, in order to help users during the public
resources discovery phase. This way, through a semantic
reasoner, users can perform semantic queries to the
ResourceBase, which can produce more accurate results than a
string-matching query.

REFERENCES
[1] Mainetti, L., Patrono, L., Vergallo, R.: IDA-Pay: A secure and

efficient micro-payment system based on Peer-to-Peer NFC
technology for Android mobile devices, Journal of
Communications Software and Systems, Volume 8, Issue 4,
December 2012, Pages 117-125.

[2] De Luca, G., Lillo, P., Mainetti, L., Mighali, V., Patrono, L.,
Sergi, I.: The use of NFC and Android technologies to enable a
KNX-based smart home, 2013 International Conference on
Software, Telecommunications and Computer Networks,
SoftCOM 2013, 2013, Article number 6671904, pp.1-7, 2013.

[3] Catarinucci, L., Colella, R., Mainetti, L., Patrono, L., Pieretti,
S., Sergi, I., Tarricone, L.: Smart RFID antenna system for
indoor tracking and behavior analysis of small animals in colony
cages, IEEE Sensors Journal, Volume 14, Issue 4, April 2014,
Article number 6678175, Pages 1198-1206

[4] L. Mainetti, L. Patrono, and A. Vilei: Evolution of wireless
sensor networks towards the Internet of Things: a survey, 2011

International Conference on Software, Telecommunications and
Computer Networks, SoftCOM 2011, pp. 16-21, 2011.

[5] IEEE Standard for Local and metropolitan area networks - Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC Sublayer, 802.15.4e, 2012.

[6] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of IPv6 Packets over IEEE 802.15.4 Networks,”
RFC4944, 2007.

[7] Z. Shelby, K. Hartke, and C. Bormann, “Constrained
Application Protocol (CoAP),” draft-ietf-core-coap-18, 2013.

[8] D. Guinard, V. Trifa, and E. Wilde, “A Resource Oriented
Architecture for the Web of Things,” in Proc. IoT, Tokyo,
Japan, 2010, pp. 1–8.

[9] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, "Cyber-physical
systems: The next computing revolution," in Proc. DAC,
Anaheim, California, 2010, pp. 731–736.

[10] L. Anchora, A. Capone, V. Mighali, L. Patrono, and F. Simone,
“A novel MAC scheduler to minimize the energy consumption
in a Wireless Sensor Network,” Ad Hoc Networks, vol. 16, pp.
88–104, 2014.

[11] L. Catarinucci, S. Guglielmi, L. Mainetti, V. Mighali, L.
Patrono, M.L. Stefanizzi, and L. Tarricone, “An Energy-
Efficient MAC Scheduler based on a Switched-Beam Antenna
for Wireless Sensor Networks,” Journal of Communication
Software and Systems, vol. 9, no. 2, pp. 117–127, June, 2013.

[12] L. Catarinucci, R. Colella, G. Del Fiore, L. Mainetti, V. Mighali,
L. Patrono, M.L. Stefanizzi, “A cross-layer approach to
minimize the energy consumption in wireless sensor networks,”
International Journal of Distributed Sensor Networks, Volume
2014, Article number 268284, DOI: 10.1155/2014/268284.

[13] D. Alessandrelli, L. Mainetti, L. Patrono, G. Pellerano, M.
Petracca, and M. L. Stefanizzi: Implementation and validation of
an energy-efficient MAC scheduler for WSNs by a test bed
approach, 2012 International Conference on Software,
Telecommunications and Computer Networks, SoftCOM 2012,
Article number 6347615, 2012.

[14] J.W. Hui and D.E. Culler, “IP is dead, long live IP for wireless
sensor networks,” in Proc. SenSys 2008, Raleigh, NC, USA,
2008, pages 15–28.

[15] S. Duquennoy, G. Grimaud, and J.J. Vandewalle, “The Web of
Things: interconnecting devices with high usability and
performance,” in Proc. ICESS 2009, HangZhou, Zhejiang,
China, 2009, pp. 323–330.

[16] L. Richardson and S. Ruby, “RESTful web services,” O’Reilly
Media, May 2007.

[17] V. Gupta, A. Poursohi, and P. Udupi, “Sensor.Network: An
open data exchange for the web of things,” in PERCOM
Workshops, Mannheim, 2010, pp. 753–755.

[18] M. Blackstock and R.Lea, “WoTKit: a lightweight toolkit for the
web of things,” in Proc. WoT 2012, New York, NY, USA, 2012.

[19] D. Guinard and V. Trifa, “Towards the Web of Things: Web
Mashups for Embedded Devices,” in Proc. WWW 2009, Madrid,
Spain, 2009.

[20] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented
architecture for the Web of Things,” in Proc. IOT 2010, Tokyo,
2010, pp. 1–8.

[21] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A
RESTful Runtime Container for Scriptable Internet of Things
Applications,” in Proc. IoT 2012, Wuxi, China, 2012, pp. 135–
142.

[22] L. Mainetti, V. Mighali, L. Patrono, P. Rametta, S.L. Oliva: A
novel architecture enabling the visual implementation of web of
Things applications, 2013 International Conference on Software,
Telecommunications and Computer Networks, SoftCOM 2013,
pp.1-7, 2013.

[23] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving
Application Logic from the Firmware to the Cloud: Towards the

L. MAINETTI et al.: DISCOVERY AND MASH-UP OF PHYSICAL RESOURCES THROUGH A WEB OF THINGS 133

Thin Server Architecture for the Internet of Things,” in Proc.
IMIS 2012, Palermo, Italy, 2012, pp. 751–756.

[24] B.C. Villaverde, R. De Paz Alberola, A.J. Jara, S. Fedor, S.K.
Das, and D. Pesch: "Service Discovery Protocols for
Constrained Machine-to-Machine Communications,"
Communications Surveys & Tutorials, IEEE, vol.16, no.1,
pp.41-60.

[25] Z. Shelby, C. Bormann, and S. Krco: “CORE Resource
Directory” draft-ietf-core-resource-directory-01, 2014.

[26] S. Cheshire, and M. Krochmal: “DNS-Based Service
Discovery”, RFC 6763, 2013.

[27] S. Cheshire, and M. Krochmal: “Multicast DNS”, RFC 6762,
2013.

[28] A.J. Jara, P. Martinez-Julia, and A. Skarmeta: "Light-Weight
Multicast DNS and DNS-SD (lmDNS-SD): IPv6-Based
Resource and Service Discovery for the Web of Things," in
Proc. IMIS 2012, Palermo, Italy, 2012, pp.731-738.

[29] T.A. Butt, I. Phillips, L. Guan, and G. Oikonomou: “TRENDY:
An Adaptive and Context-Aware Service Discovery Protocol for
6LoWPANs”, in Proc. WOT 2012, Newcastle, UK, June 2012.

[30] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman, and
P. Demeester: "Facilitating Sensor Deployment, Discovery and
Resource Access Using Embedded Web Services," in Proc.
IMIS 2012, Palermo, Italy, 2012, pp.717-724.

[31] F. Gramegna, S. Ieva, G. Loseto, and A. Pinto: "Semantic-
enhanced resource discovery for CoAP-based sensor networks,"
in Proc. IWASI 2013, Bari, Italy, 2013, pp.233-238.

[32] M. Yuriyama, and T. Kushida: "Sensor-Cloud Infrastructure -
Physical Sensor Management with Virtualized Sensors on Cloud
Computing," in Proc. NBiS ‘10, Takayama, Japan, 2010, pp.1-8.

[33] I. Janggwan, K. Seonghoon, and K. Daeyoung: "IoT Mashup as
a Service: Cloud-Based Mashup Service for the Internet of
Things," in Proc SCC 2013, Santa Clara Marriott, CA, USA,
2013, pp.462-469.

[34] S. Bandyopadhyay, and A. Bhattacharyya: “Architecture
supporting discovery and management of heterogeneous sensor
for smart system using generic middleware” International
Journal of Computer Networks & Communications (IJCNC)
Vol.4, No.5.

[35] B.B.P. Rao, P. Saluia, N. Sharma, A. Mittal, and S.V. Sharma:
"Cloud computing for Internet of Things & sensing based
applications," in Proc. ICST 2012, Kolkata, India, 2012, pp.374-
380.

[36] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power
CoAP for Contiki,” in Proc. MASS 2011, Valencia, Spain, 2011,
pp. 855–860.

[37] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki – a lightweight
and flexible operating system for tiny networked sensors,” in
IEEE LCN 2004, Florida, USA, 2004, pp. 455–462.

[38] Z. Shelby and Sensinode, “Constrained RESTful Environments
(CoRE) Link Format,” RFC 6690, August 2012.

[39] “ClickScript”. Internet: http://clickscript.ch/site/home.php [Mar.
10, 2014].

[40] “Node.js”. Internet: http://nodejs.org/ [Dec. 28, 2013].
[41] M. Kovatsch: "Demo abstract: Human-CoAP interaction with

Copper," in Proc. DCOSS 2011, Barcelona, Spain, 2011 pp.1-2.
[42] “ws: a Node.js WebSocket library”. Internet:

https://github.com/einaros/ws.
[43] “node-mysql”. Internet: https://github.com/felixge/node-mysql.

Luca Mainetti is an associate professor of
software engineering and computer graphics at
the University of Salento. His research interests
include web design methodologies, notations
and tools, services oriented architectures and
IoT applications, and collaborative computer
graphics. He is a scientific coordinator of the
GSA Lab - Graphics and Software
Architectures Lab and IDA Lab - IDentification

Automation Lab at the Department of Innovation Engineering,
University of Salento.

Vincenzo Mighali received the "Laurea"
Degree in Computer Engineering with honors at
the University of Salento, Lecce, Italy, in 2012.
Since January 2009 he collaborates with IDA
Lab — IDentification Automation Laboratory
at the Department of Innovation Engineering,
University of Salento. His activity is focused on
the definition and implementation of new
tracking system based on RFID technology and

on the design and validation of innovative communication protocol
aimed to reduce power consumption in Wireless Sensor Networks.
He is also involved in the study of new solutions for building
automation. He authored several papers on international journals and
conferences.

Luigi Patrono received his MS in Computer
Engineering from University of Lecce, Lecce,
Italy, in 1999 and PhD in Innovative Materials
and Technologies for Satellite Networks from
ISUFI-University of Lecce, Lecce, Italy, in
2003. He is an Assistant Professor of Network
Design at the University of Salento, Lecce,
Italy. His research interests include RFID,
EPCglobal, Internet of Things, Wireless

Sensor Networks, and design and performance evaluation of
protocols. He is Organizer Chair of the international Symposium on
RFID Technologies and Internet of Things within the IEEE SoftCOM
conference. He is author of about 80 scientific papers published on
international journals and conferences and four chapters of books
with international diffusion.

Piercosimo Rametta received the "Laurea"
Degree in Computer Engineering with honors at
the University of Salento, Lecce, Italy, in 2013.
His thesis concerned the definition and
implementation of a novel mash-up tool for
Wireless Sensor Networks’ configuration. Since
November 2013 he collaborates with IDA Lab
— IDentification Automation Laboratory at the
Department of Innovation Engineering,

University of Salento. His activity is focused on the definition and
implementation of new mash-up tools for managing smart
environments based on Wireless Sensor Networks and Internet of
Things.

134 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 10, NO. 2, JUNE 2014

	I. INTRODUCTION
	II. Related Works
	III. Key Features of a WoT Architecture
	IV. The Proposed WoT Architecture
	V. Underlying Technologies
	A. Thin Server architecture
	B. Actinium Server
	C. The ClickScript Editor

	VI. Implementation Details Of The Proposed Architecture
	A. RESTful interface for physical devices
	B. MaDEC Platform core
	C. 2-ways Proxy Server
	D. The ResourceBase
	E. Graphical interface for discovery and mash-up

	VII. A Proof-of-Concept
	VIII. CONCLUSIONS
	References

