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Abstract— The Internet of Things has focused on new systems, 
the so-called smart things, to integrate the physical world with the 
virtual world by exploiting the network architecture of the 
Internet. However, defining applications on top of smart things is 
mainly reserved to system experts, since it requires a thorough 
knowledge of hardware platforms and some specific 
programming languages. Furthermore, a common infrastructure 
to publish and share resource information is also needed. In this 
paper, we propose a software architecture that simplifies the 
visual development and execution of mash-up applications based 
on smart things, exploiting Internet Web protocols and their 
ubiquitous availability even on constrained devices. We have 
developed a distributed architecture that allows to create and 
control mash-up applications in an easy and scalable way, 
without specific knowledge on both hardware and programming 
languages. In addition, we have also defined a centralized public 
database deployed on the Internet, to manage and share physical 
resource information. The effectiveness of the proposed 
framework has been tested through a real use case and 
experimental results have demonstrated the validity of the whole 
system. 
 

Index Terms—CoAP, Mash-up, REST, WoT, WSN, Resource 
discovery. 

I. INTRODUCTION 
HE recent technological innovations in the field of 
microelectronics and microcontrollers have led to the 

wide dissemination of the so-called smart things, that is, 
physical devices with sensing and actuating capabilities, but 
low computational and energy power. Generally, a quite large 
number of these devices are deployed in the real world and 
interconnected to create a wide range of applications for 
environmental monitoring, smart cities, home and building 
automation [1, 2], etc. In this perspective, some emerging 
technologies such as Radio Frequency Identification (RFID) 
[3] and constrained networks, first of all Wireless Sensor 
Networks (WSNs), are rapidly asserting as the most important 
type of distributed pervasive systems [4]. In order to improve 
the communication among these devices, several low-power 
protocols have been developed, such as Bluetooth, ZigBee, 
IEEE 802.15.4 [5], and more recently, 6LoWPAN [6] and 
Constrained Application Protocol (CoAP) [7]. However, 
despite all efforts made to integrate smart things at the 
network layer, embedded devices still form small and 
separated islands for the application layer.  
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In this context, the Internet architecture appears to be the 
best model to adopt in order to integrate smart things into the 
digital world, leading to the well-known Internet of Things 
(IoT) concept. Furthermore, at a higher level, the Web is an 
example of how a set of open and relatively simple protocols 
and languages (e.g., HTTP, HTML, XML, etc.) can be used to 
implement flexible systems while ensuring efficiency, 
scalability, and ubiquitous availability on a wide variety of 
devices, included constrained devices. These considerations 
have led the IoT concept towards the Web of Things (WoT) 
concept [8]. According to it, all the traditional paradigms of 
the Web are adapted to integrate smart things not only at the 
network layer, but also into the Web (i.e., at the application 
layer). More in detail, adopting the WoT concept, the data 
produced by smart devices should be directly accessible as 
normal Web resources, so as providing the so-called physical 
mash-up [9].  

Despite these interesting perspectives, the use of smart 
things in physical mash-up is hindered by some drawbacks, 
mainly related to the power consumption of nodes and to the 
difficulty in programming the network. While for the first 
aspect there are many solutions in the literature focused on 
minimizing the power consumption at various levels of the 
protocol stack [10, 11, 12, 13], for the second problem, a 
dominating solution has not yet emerged.  

Firstly, defining capabilities and resources on each physical 
device is not a trivial activity, since it implies a deep 
knowledge of hardware platforms and embedded operating 
systems. Secondly, developing end-user applications requires 
the knowledge of some programming languages. Thirdly, it is 
needed to associate some contextual information to physical 
resources, so that any kind of user can easily manage, publish 
and discover them regardless devices heterogeneity. Finally, 
resource availability must be consistent with the execution 
state of the devices on which they are defined. Several 
solutions exist in literature that address separately some of the 
above outlined aspects, but none of them proposes a single 
software architecture for applications development/control and 
for resources management, fully integrated in the Web of 
Things.  

In this work, a distributed Web of Things architecture has 
been defined and validated (i) to support the development of 
applications interacting with constrained devices and (ii) to 
manage private and public resources information.  

The overall architecture consists of two main components: 
the Mash-up Definition Execution and Control (MaDEC) 
Platform and the ResourceBase. The first component is a local
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framework for the definition, execution and control of 
applications dealing with physical resources. Through its 
layered architecture, the MaDEC Platform allows resources 
definition on constrained devices and execution of mash-up 
applications interacting with them. Moreover, it provides a 
visual Integrated Development Environment (IDE) to 
graphically define applications business logic and to control 
their execution through visual dashboards. The IDE also 
includes a Web interface to manage local resources, 
associating some functional and/or spatial information to 
them, and to discover public resources according to a set of 
searching criteria. 

The second component of the architecture, the 
ResourceBase, is a centralized database deployed on the 
Internet, where users can store all information regarding their 
private resources. By setting a particular flag in the resource 
description, owner can tag the resource as public, thus making 
it usable by another user on the Internet. 

The rest of the paper is organized as follows. Section II 
summarizes the state-of-the-art related to solutions for 
implementation of mash-up applications and for resource 
discovery. Section III defines the main requirements that an 
optimal WoT architecture should guarantee. An overview on 
the proposed solution is presented in Section IV, whereas 
Section V provides an overview about the starting 
technologies. The detailed description of the proposed 
architecture is given in Section VI, and in Section VII a case 
study for evaluating the effectiveness of the proposed solution 
is described. Conclusions and open issues are drawn in Section 
VIII. 

II. RELATED WORKS 
Wireless Sensor and Actuator Networks are the core of 

many recent IoT applications because of their ubiquity and 
growing diffusion. However, the complexity in developing 
applications for these platforms has been a key issue over the 
last decade. In the recent years, several research works have 
exploited the advent of IP technologies for WSNs [14], and 
they have taken advantage of the development of very small-
footprint Web servers implementing full HTTP stack [15]. So, 
these approaches are based on the Representational State 
Transfer (REST) architectural paradigm [16], which allows the 
manipulation of network resources by means of the basic 
HTTP methods. An important concept in the REST 
architecture is the possibility to access the information sources 
via a Uniform Resource Identifier (URI). Sensor.Network [17] 
is an example of the use of the REST paradigm for storing, 
sharing, searching, and viewing data coming from 
heterogeneous devices. A more intuitive tool is known as 
WoTkit [18], a toolkit for the Web of Things. It is a Java Web 
application that abstracts both sensors and actuators through a 
single physical model consisting of a virtual sensor to which 
the data coming from physical devices are associated.  

In [19], the authors discuss, by illustrating two concrete 
implementations, how the REST principles can be applied to 
embedded constrained devices. Then, they show how RESTful 
interactions can be leveraged to quickly create new mash-up 

applications that integrate physical and virtual world. In [20], 
authors describe their idea of Web of Things architecture and 
the best-practices based on the RESTful principles.  

Although the architectures and the platforms described so 
far are very promising, they implement their RESTful 
interfaces using the HTTP protocol at the application level. It 
exploits Transmission Control Protocol (TCP) as transport 
protocol, which can be quite inadequate for constrained 
devices, due to computational and energy requirements and 
the lack of a native server-push mechanism.  

An interesting approach to address the HTTP issue is 
represented by the use of CoAP. Indeed, in addition to the 
HTTP features, it offers a built-in mechanism for the resources 
discovery, supports the IP multicast, and natively provides a 
server-push model and an asynchronous exchange of 
messages. It also has a small-size header and it bases the 
communication on the User Datagram Protocol (UDP) as 
transport protocol. A recent solution regarding the 
development of IoT applications based on CoAP is reported in 
[21, 22]. A key aspect of the proposed framework is the Thin 
Server [23], a light CoAP server installed on the physical 
devices that exposes hardware capabilities through a RESTful 
interface. Another fundamental building block is the 
application server Actinium, which allows the execution of 
WSN-based applications written in JavaScript.  

Resource discovery, i.e. finding suitable local/remote 
resources, is another important topic in this context.  The 
greatest part of the published works addressing this issue 
basically belong to two categories: those that implement this 
feature at device level, and those that provide a middleware 
dealing with resources/data description and discovery. 

According to the taxonomy depicted in [24], IP-based 
solutions belong to the first category. They try to adapt well-
known Internet discovery mechanisms, like Domain Name 
System (DNS), to constrained networks, or they exploit 
protocols specifically designed for such networks, like CoAP. 
Both solutions can operate in a centralized fashion (CoAP-RD 
[25] and DNS-SD [26]), or in a distributed way (CoAP 
Discovery and Multicast-DNS [27]) with no special nodes. 
Jara et al., in [28], propose a lightweight multicast DNS 
Service Directory, i.e. a set of implementation guidelines and 
design recommendations in order to make suitable the use of 
mDNS and DNS-SD in smart things. TRENDY [29], instead, 
is a CoAP registry-based service discovery protocol with 
context awareness, provided with an adaptive timer and a 
grouping mechanism to minimize control overhead and energy 
consumption. The self-configuration mechanism, proposed in 
[30], combines CoAP with DNS in order to address 
constrained nodes with user-friendly fully qualified domain 
names. This makes resources globally discoverable and 
accessible from any Internet-connected client, by means of 
IPv6 addresses or DNS names. Gramegna et al. take a step 
further and in [31] propose some CoAP extensions to allow 
semantic annotation of resources with respect to a reference 
ontology, in order to provide resources discovery and ranking 
based on non-standard inferences. All of these works, despite 
their efficacy, require that all nodes in the networks are aware 
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of the discovery mechanisms, so this implies computational 
overhead on devices and additional communications among 
them. 

An alternative approach is to build a middleware-based 
discovery architecture, where resource owners can actively 
decide which resources can be shared with others. Sensor-
Cloud Infrastructure [32] is one of the first examples of Cloud 
platform where owners can register their physical sensors and 
manage them through a virtual sensor model. Other users can 
access real data provided by virtual sensors for monitoring 
applications. IoTMaaS [33] is a Cloud-based middleware that 
proposes a new mash-up service model, which composes thing 
models, software models, and computation resource models. 
During mash-up process, these three components can be 
customized depending on end-users preferences. In [34], a 
layered middleware architecture, along with a method for 
efficient device interoperation through the generation of a 
generic device attributes structure, is presented. It proposes an 
algorithm to create a hierarchical device attributes structure 
and to form device clusters. This way, faster device 
interoperation, efficient sensor discovery, management and 
posting of sensed data can be achieved.  

Other kinds of middleware architectures, in addition to 
discovery capabilities, also offer the possibility to store data 
generated by sensors in distributed or centralized data-stores, 
in order to make it available for any application. Rao et al. 
[35] propose a middleware in which owners expose their 
devices in a catalogue and through which the captured data is 
periodically stored in the cloud. Remote users can access this 
data simply by selecting the appropriate components in the 
catalogue. The drawback of such solution is the big amount of 
data generated by physical devices, and thus the needs of vast 
storage. Moreover, not all the data stored may actually be 
required by applications, with the effect of unnecessary 
communications between devices and wasted memory on 
data-stores. 

III. KEY FEATURES OF A WOT ARCHITECTURE 
The development of IoT applications on top of constrained 

devices and embedded operating systems requires specific 
skills, thus, it is only accessible to experts in embedded 
systems. Moreover, the management of local resources and the 
discovery of remote resources, used in these applications, are 
not still integrated in a complete WoT architecture, as seen in 
the Section II. For this reason, the overall goal of a WoT 
architecture should be to facilitate the development of IoT 
applications, regardless of both the target physical technology 
and the location of the physical resources. In this perspective, 
the main guidelines in the design of a WoT architecture should 
be: 
• Low entry barrier for developers. This would allow a 

wider range of developers, tech-savvy users and ordinary 
end-users to foster rapid prototyping using smart things. 

• High usability and ubiquity. Users should be able to 
access and use smart things data and services from 
everywhere, by using different kind of platforms and 
systems.

df 
• Capability to manage and share resources. The 

architecture should allow users to associate additional 
contextual information to their local resources and to 
share them with other consumers on the Internet. It should 
also allow to discover public resources shared by remote 
users. 

• Lightweight access to smart things data. This allows 
creating applications in which real-world data are directly 
consumed by resource-constrained devices, such as 
mobile phones, without requiring high computational and 
storing resources. 

• Remote control of the embedded devices. The architecture 
should provide a bidirectional communication channel 
through which resources can be queried to retrieve 
information, but also actuated to change their state. 

• Low computational load to meet poor computational and 
memory capabilities of the embedded devices. The 
fulfillment of these principles has led to several design 
choices. The most important ones are the following: 

• The embedded devices must be kept free of any business 
logic. They only have to expose their resources through a 
common interface that abstracts hardware heterogeneities. 
This way, embedded devices act as small servers, 
exposing their physical resources as normal web 
resources.  

• The architecture core must be in charge of resources 
discovery, indexing and sharing. In particular, the 
management mechanism has to allow resource owners to 
enrich their local resources with useful contextual 
information, in order to ease the indexing and discovering 
procedures.  

• The architecture core must be also responsible of the 
business logic execution. Mash-up applications should run 
into dedicated application servers, which should take care 
of data processing, communication with physical 
resources and delivery of results to user interfaces. 

• The mash-up functionalities of the architecture should be 
supported by simple APIs. This would allow developers 
to quickly deploy their applications, since they could be 
able to interact with physical devices through high-level 
methods. Also graphical editors could be exploited to 
visually implement and interact with mash-up 
applications. 

IV. THE PROPOSED WOT ARCHITECTURE 
The proposed WoT architecture is composed by two macro-

components: one deals with applications development and 
execution, and the other deals with resources information 
storage.  

The Mash-up Definition Execution and Control (MaDEC) 
Platform consists of a four-layered architecture, as shown in 
Fig. 1.  

At the highest level, the closest to the user, there is the 
composition layer, which allows application development by 
means of visual programming. This layer provides the user 
with some graphical blocks that model the embedded devices  
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of a smart network and it allows, at run time, to interact with 
the running applications through some dashboards. 

It also provides the user with a Web interface to manage 
local resources, associating some functional and/or spatial 
information to them, and to discover public resources 
according to some searching criteria.  Then, at the next layer, a 
2-ways Proxy Server has been defined in order to enable the 
communication between the development environment (in 
particular, the applications dashboards), the running 
applications and the ResourceBase. Further down, the 
architecture deals with monitoring the connectivity of 
embedded devices and with execution of mash-up 
applications: an application server is devoted to these tasks. At 
the lowest level, a CoAP-based RESTful Thin Server allows 
physical devices to expose their resources for the WoT 
applications. This framework is deployed on a local gateway 
and connected, on the one hand, directly with the WSN and, 
on the other hand, with the Internet through a Local Area 
Network (LAN). 

In order to interact with a CoAP resource, whether local or 
remote, it is sufficient to know only the URI of the resource 
itself. However, a URI is often poorly significant from a user 
point of view, since s/he may want to evaluate some other 
information related to resources, like spatial or contextual 
information, in order to choose which resource best fits her/his 
application requirements. For this reason, the second 
component of the proposed architecture has been introduced.  

The ResourceBase is a centralized database deployed on the 
Internet, which is used to store all contextual information 
associated to private resources, such as type and/or location, in 
addition to the URI. Owner can tag a given resource as public, 
by setting a particular flag in the resource description; this 
makes it usable by another consumer on the Internet, who 
handles in his/her application the data coming directly from 
the resource. It is worth noting that this architecture does not 
deal with storing data generated by physical devices, but it 
only stores metadata in order to ease remote resource 
discovery. 

The Fig. 2, illustrates how several instances of the MaDEC 
Platform are interconnected with the ResourceBase, so 
realizing a distributed architecture for discovering and 
mashing-up of physical resources.  

V. UNDERLYING TECHNOLOGIES 
The starting point of the proposed WoT architecture is 

represented by three main components that are not currently 
compatible with each other, but whose features, properly 
combined, are suitable to meet the requirements described in 
the Section III.  

A. Thin Server architecture 
Thin Servers provide a low-level API that wraps the 

elementary functionalities of devices, so allowing accessing 
and configuring the device parameters to interact with the 
physical world. This approach enables multiple concurrent 
applications to interact with physical devices without the need 
to reprogram IoT nodes for each application. One of the most 
promising Thin Server implementations is the Erbium REST 
Engine [36], which includes a comprehensive embedded 
CoAP implementation for the Contiki operating system [37], 
providing application level interoperability through a RESTful 
interface. Erbium defines three kinds of RESTful resources 
(namely RESOURCE, EVENT_RESOURCE and 
PERIODIC_RESOURCE) and natively implements 
publish/subscribe mechanism that, for the 
PERIODIC_RESOURCE, automatically stores subscriptions 
and then notifies the subscribers if a status change occurs. 
Finally, in order to support the resource discovery, Erbium 
creates an interface that returns a list of links, compliant with 
the CoRE Link Format [38] (the ./well-known/core resource), 
about resources hosted by that server. 

B. Actinium Server 
Actinium [21] is a novel RESTful runtime container for 

scripted IoT applications and it is based on Californium, a 
modular Java-based CoAP implementation. Each running 
application, called Actinium App, is modeled as a resource, 
which can be installed, updated, and removed exploiting a 
RESTful API. The running scripts are written in JavaScript 
language, which has been enhanced by adding an interface to 
directly communicate with CoAP resources.  

Despite Actinium seems to be extremely suitable in the IoT 
context, it has some shortcomings that make it currently 
immature to be used in a WoT architecture. The first issue to 
address is the absence of a discovery mechanism, which is 
needed by the application server in order to detect the local 

 
Fig. 2 Several MaDEC Platform instances connected to the 

ResourceBase 

 

 
Fig. 1. Layered structure of the MaDEC Platform 
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WSN devices and their resources. Moreover, Actinium 
currently lacks a specific mechanism for the management of 
the server-push mode, i.e., the ability of a physical resource to 
send notifications upon the occurrence of certain events.  

C. The ClickScript Editor 
The ClickScript project [39] defines an interpreted visual 

programming language, based on JavaScript and provided by 
means of a Web application, which allows non-expert users to 
graphically implement applications that run in a browser. The 
user can easily extend the language by defining new 
components and s/he can control the execution of each script 
through graphical dashboards provided by the integrated 
development environment. ClickScript is a data-flow-based 
interpreted programming language, in which each instruction 
is evaluated at runtime: once all components of an application 
are placed in the programming area and are interconnected 
according to the business logic, each of them is executed only 
when all input data are available.  

ClickScript has no knowledge of CoAP and it is currently 
not able to communicate with Actinium, since its native 
purpose is far from IoT context. In addition, as said before, it 
is designed so that its applications run only locally, within the 
browser, and one at a time.  

VI. IMPLEMENTATION DETAILS OF THE PROPOSED 
ARCHITECTURE 

The technologies described in the previous section are the 
basis on which the proposed architecture was designed. This 
section explains how the above components have been adapted 
and enhanced to realize the MaDEC Platform and the 
ResourceBase.  

A. RESTful interface for physical devices 
The Erbium implementation was adapted to the available 

hardware. According to the Thin Server paradigm, in order to 
read the value of the sensors, each of them was registered in 
Erbium as a resource and a proper handler was defined for 
each sensor. Upon receipt of a GET request coming from 
client applications, the handler polls the sensor and builds the 
response message using the sensor state as payload. The same 
approach was used for the actuators, but, in this case, the 
defined handlers are able to respond also to POST requests 
sent by client applications to change actuator state. Finally, in 
order to define an observable sensor on Erbium, an 
EVENT_RESOURCE was implemented. At each occurrence of 
the desired event, it exploits a proper handler to retrieve the 
actual resource state, create the update message, and notify all 
the observers. 

B. MaDEC Platform core  
The execution and control of mash-up applications are the 

core features of the MaDEC Platform and they are mainly 
accomplished by the Actinium application server. For these 
purposes, Actinium was properly enhanced in order to create 
an environment where application can interact with CoAP 
resources placed within the local WSN or distributed over the 
Internet. The MaDEC Platform, also plays an important role in 

local resource discovery and in the process of resource 
availability updating. The architecture is depicted in Fig. 3. 

The local discovery procedure is performed by a JavaScript 
application, called discover-motes, which runs at the Actinium 
startup and stores the available resources in a resource 
directory. In particular, it retrieves, from the border-router, the 
IP addresses of the connected WSN devices and, for each of 
them, it installs on Actinium a clone-application that acts as a 
"proxy" for the corresponding embedded device. More in 
detail, each proxy application has the same resources of the 
corresponding node (sensors, actuators, etc.), so as to realize a 
mapping of physical resources on the Actinium resources. 
Each client application sends its requests to the proxy 
applications and not directly to the embedded devices. Then, 
the proxy applications have the burden to forward the requests 
to physical devices, in order to get the responses and to deliver 
them to the client applications. The advantage of using the 
proxy applications is clear in a subscription/notification 
scenario, where multiple client applications can subscribe to 
the same observable resource, without affecting the limited 
capabilities of the physical devices. The discover-motes 
application is also responsible for motes availability check. It 
periodically checks each IP address associated to the border-
router by sending a GET request to the .well-known/core 
resource. If no answer is received within a predefined timeout, 
the discovery application supposes that the mote is no more 
available, maybe due to battery depletion or to shut down by 
owner. In this case, the related proxy application is shut down 
and deleted from the application server.  

Finally, the structure of a generic Actinium IoT application, 
called Actinium App, was reorganized in a more appropriate 
way, in order to drive the mapping algorithm explained in 
section VI.E. More in detail, the listing of the application 
consists of the following sections: 
• CODE: it contains the functional code of the objects and 

the input/output sub-resources used in the application; 
• INSTANCES: it contains the definition of the object 

 
Fig. 3. MaDEC Platform implementation 
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instances used in the application; 
• STATE: it defines the Status object, which aggregates the 

status of each input/output component and sends it to the 
application GUI; 

• BODY: it contains the application logic instructions and 
the execution cycle; 

• APP-ROOT: it includes the handlers of the global 
application resources. 

 

C. 2-ways Proxy Server 
The 2-ways Proxy Server is the middle component of the 

whole architecture, since it enables communications between 
the MaDEC Platform components and the ResourceBase. It 
has the burden of translating requests coming from visual 
dashboards into CoAP messages for the Actinium applications 
and vice versa. It also translates the operations regarding the 
resource management and discovery, made through the 
graphical user interface, into SQL queries understandable by 
the ResourceBase. The Fig. 4 summarizes the proxy features. 

The proxy server is fully based on the JavaScript language, 
exploiting the capabilities of the Node.js framework [40]. To 
implement the CoAP side, an open-source CoAP plug-in for 
Firefox, called Copper [41], was analyzed and suitably 
adapted for our purposes. Particular attention was paid to the 
implementation of both the blockwise messages and the 
simultaneous observation of multiple observable resources. 

 Regarding the WebSocket side, it was realized starting 
from an open-source implementation of the WebSocket 
protocol [42] for the Node.js framework. The translation 
between the two sides of the proxy is carried out by exploiting 
specific numerical codes included in the WebSocket request, 
each of which corresponds to a specific command of the CoAP 
interface of the proxy. Once the WebSocket request is 
received, the proper CoAP method is invoked and the CoAP 
message is created basing on the other parameters of the 
WebSocket request. Then, the message is sent to the CoAP 
server Actinium through an UDP socket. In the opposite 
direction, once the CoAP side of the proxy server receives the 
response coming from Actinium, it uses this message to create 
the payload of the response for the WebSocket client. In this 
way, the CoAP communication is completely transparent to 
the ClickScript client.  

The same pattern was followed for the SQL side of the 
proxy. It is based on an open-source implementation of the 
MySQL client [43] for Node.js and, once the WebSocket 
request is received, the payload is translated into the proper 
SQL query, and sent to the ResourceBase through a previously 
instantiated TCP connection. This allows any CRUD operation 
on the ResourceBase. Query results follow the opposite 
direction, flowing from the ResourceBase back to the client 
through the WebSocket channel. The “Availability Observer” 
module, shown in Fig. 4, is the central component of the 
resource availability updating mechanism and its 
functionalities are explained in detail in the next section. 

Finally, the proxy also provides storing capabilities, 
allowing to store ClickScript files and graphical user interfaces 

on the gateway file system.  

D. The ResourceBase 
The ResourceBase is a centralized MySQL database, with a 

well-known public address, that stores all information related 
to sensors and actuators owned by each WSN owner. It 
contains two tables (one for Sensors and one for Actuators), 
each of which consists of a number of fields regarding the 
characteristics of each resource (for example name, type, 
owner, if it is observable and/or public, etc.), its location 
(absolute and logical), its URI and its running state. The public 
field is crucial in this context; if it is set to yes, it states that the 
given private resource becomes publically available and any 
remote user can use it in his/her applications. The running 
field also has an important role. If it is set to true, it means that 
the resource is up and running, whereas, if it is set to false, it 
means that the resource is not available at the moment, maybe 
because the physical device is off, or the corresponding board 
proxy application is not running.  

Since the ResourceBase does not have the burden to store 
the data produced or consumed by physical devices, a 
centralized solution is suitable enough to handle all resource 
metadata and to guarantee scalability and robustness. 
However, if the number of stored resource were to grow 
disproportionately, the theory of distribute databases would 
help us by managing the tables on physically distributed 
database in a transparent way respect to user. 

The interaction with the ResourceBase can be mainly 
divided into three phases, as explained below. 

D.1 Resource registration and management 
This phase takes care of creating a record in the 

ResourceBase for each resource defined in the local WSN. 
After the local discovery procedure accomplished by the 
discover-motes application, the first time a proxy application 
associated to the resource is executed, a new line is 
automatically inserted into the proper table of the 
ResourceBase. At this point, only some fields in the table are 
set: the URI field is set with the full path of the resource (that 
acts as an index, since it is globally unique) and the public 
field is set to false (default for privacy purposes). At a later 
moment, the resource owner can use the ClickScript 
“Management” interface to add or update all the remaining 

 
Fig. 4. 2-ways Proxy server 
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information in the resource record, including the value of the 
public field. S/he can also manually insert a new record 
independently from the automatic mechanism. It is worth 
noting that resource owners can only manage the resources 
they own, whether local or public.  

D.2 Resource availability updating 
An automatic mechanism was implemented to promptly 

update the availability state of a public resource. This 
functionality is carried out cooperatively by several 
components of the whole architecture, as illustrated in Fig. 5. 

The first component is the “notify” function in each board 
proxy application. This function, when invoked, sends a 
notification to the “Availability Relay” resource (discussed 
later), containing the list of resources defined on the board. 
When the “notify” function is invoked at proxy application 
start up (case a)), it sends also a string “true” in the 
notification message, to notify that all the resources are 
available and running. Instead, when the application is 
unloaded (case b)), the “notify” function sends a string “false”, 
meaning that above resources are no longer available. 

The second block is the “Availability Relay” resource. This 
is a double-sided RESTful CoAP observable interface 
(running on the Actinium server), which the 2-ways Proxy 
Server subscribes to at start up. The “Availability Relay” acts 
as a relay that gathers availability notifications from board 
proxy applications and passes them to the proxy server, in a 
CoAP request, as soon as they arrive.  

The third component of the mechanism is the “Availability 
Observer” module of the 2-ways Proxy Server. It subscribes 
the proxy to the “Availability Relay” resource of the Actinium 
server, and includes a callback function that is executed when 
availability notifications arrive. For each resource contained in 
the notification, the suitable SQL query is composed. Then it 
is sent to the ResourceBase, by exploiting the MySQL side of 
the 2-ways Proxy Server. The resource URI is used as index in 
the database tables.  

It is worth noting that the resource registration procedure 
explained in Section D.1, partially overlaps with the resource 
availability updating phase. In fact, the “Availability 
Observer” module can discriminate if it has to send an 
INSERT query to the ResourceBase (registration phase) or an 
UPDATE query (availability updating phase). For the sake of 
space, Fig. 5 shows the case of availability updating upon 
resource registration. With this mechanism, every time a 
resource is started or stopped, either by user action or due to 
board (dis)connections, its availability state is immediately 
reported to the ResourceBase. This way, when remote users 
browse the public resources, they can be sure that the value of 
the running field reflects the real execution state of the 
resource. If a resource is tagged as not running at searching 
time, it should not be instantiated in any application. If a 
resource used in some application becomes unavailable at run-
time, instead, it should be care of the application itself to 
handle this situation and properly alert the user. 

D.3 Public resource discovery 
Once a private resource is declared as public, it is publically 

available on the Internet and any remote user can exploit it in 
any application. This is done by simply searching it through 
the “Discovery” Tab in the local ClickScript interface. This 
tool allows the user to perform a string-matching query on the 
ResourceBase by setting the proper fields value in the form. 
Query results are visualized in a table format, in which only 
publically available resources are shown. The interaction 
between user and ResourceBase is handled by the Clickscript 
GUI and the 2-ways Proxy Server. 

E. Graphical interface for discovery and mash-up 
The original architecture of the ClickScript application has 

been widely extended in order to adapt it to the WoT context. 
First of all, the execution of the applications has been 
transferred on the Actinium server and it is controlled by 
means of graphical dashboards. All interactions between 
ClickScript and proxy server are done through a WebSocket 

 
Fig. 5. Sequence diagram of the resource availability updating process 
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channel. 
The new architecture is shown in Fig. 6. The first three layers, 
on the left side, are used in the Programming phase. The 
Library Layer defines the graphical and functional structure of 
each ClickScript visual component, in terms of number of 
inputs, outputs and configuration fields. The Data Model 
Layer handles the creation of the application control flow, 
concerning the data and control dependencies among involved 
components. Then, the Programming Layer deals with user 
interaction to visually define the structure of the application 
and its dashboard. The Mapping Layer is in charge of the 
implementation of the mapping algorithm, which translates the 
visual script into a single JavaScript file, having the structure 
introduced in Section VI.B. The GUI Layer handles user 
interaction with the graphical interface during the Execution 
phase. It translates user actions on application dashboard into 
messages for the proxy server, and, in the opposite direction, it 
displays messages coming from the server in the proper 
dashboards. Finally, the Communication Layer implements a 
WebSocket client to interact with the proxy server.  

The new architecture has implied changes to the ClickScript 
user interface. The Programming View now includes a 
dedicated area for the dashboard associated to the application, 
and a sidebar useful to install the script on Actinium and to 
select the available local resources. Two new tabs have been 
added (i) to run an application already installed on Actinium 
(Instantiating View), and (ii) to graphically control one or 
more applications through their dashboards (Execution View). 
Moreover, one new tab has been added to manage local 
resources (Management View): through several sub-tabs and 
forms, a WSN owner can insert/search/update/delete 
information related to his/her resources stored in the 
ResourceBase. Finally, another tab (Discovery View) allows 
string-matching queries in the ResourceBase to discover any 
remote resource that best fits the application requirements. 

New ClickScript components have been defined to allow 
IoT applications implementation. Sensor, Observable Sensor 
and Actuator components are used to model the physical 
resources and to define their graphical behavior at runtime.  

The mapping algorithm (Fig. 7) is a key component of this  
 

 
new version of ClickScript. It translates the data-flow of the 
visual application, defined within the Programming View, into 
a sequential JavaScript file structured as an Actinium App. 
The algorithm consists of three phases: parsing, component 
mapping, and merging. In the parsing phase, it takes an XML-
like serialized file containing the structure of the visual script  

 
and parses it in order to obtain a number of JavaScript objects 
(scriptComponent) that wrap all the structural dependencies of 
application components. During the component mapping 
phase, for each scriptComponent, the JavaScript lines of code 
associated to the component are generated. Finally, all code 
snippets generated in the previous step are merged together to 
obtain the Actinium App final listing (merging phase). The 
mapping algorithm also applies to the creation of the 
Configuration File template associated to the application.  

VII. A PROOF-OF-CONCEPT 
To validate the whole architecture, a simple temperature 

controller application has been implemented. To better explain  
 

the resource discovery mechanism, we suppose that the 
scenario, modeled in Fig. 8, consists of a campus with several 
buildings. Each building has its own independent Wireless 
Sensor Network, reachable from the Internet through a local 
gateway. In particular, the buildingB WSN contains an 
external temperature sensor and the buildingA WSN contains 
the other needed devices, i.e. an internal temperature sensor 
and an ON/OFF actuator node that directly drives an air 
conditioner. Each device runs a Thin Server and 
communicates with the related network gateway. The overall 
goal of this application is to keep the difference between the 
external and internal temperature in a room above a user set 
threshold: if this threshold is exceeded, the air conditioner is 
activated until the set-point is reached.  

The app runs in the Actinium server installed on the 
gateway and consists of a polling cycle that, at each iteration, 
reads the sensors values, computes the difference between the 
two readings and compares it with the user threshold. Based 
on the comparison result, the air conditioner is turned on or off 
by means of the actuator node.  

To save the physical actuator from unnecessary 

 
 Fig. 7. The Mapping algorithm 

 
 Fig. 8. Use case scenario 

 
Fig. 6. The new ClickScript architecture 
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transmissions, its local application state is checked before 
acting on it. The pseudo-code of the application is the 
following. 

period = 30 (seconds) 
while (true) { 

read external temperature value Text 
read internal temperature value Tint 
read user threshold th 
compute Δ=Text-Tint 
if (Δ<th) { 

if (actuator = OFF) actuator = ON 
} else { 

if (actuator = ON) actuator = OFF 
} 
sleep(period) 

} 

As a preliminary step, we suppose that each WSN owner 
has already registered his/her resources, both private and 
public, to the ResourceBase, as explained in Section VI.D.  

A user can visually create and control the above-mentioned 
application by using the ClickScript interface on his/her 
browser. S/he can create the control flow of the algorithm by 
selecting the proper components from the toolbar in the 
Programming View and connecting them according to their 
data dependencies (Fig. 9). While the script components are 
added to the programming area, the dashboard for controlling 
the application is created in the lower section of the 
Programming View. Once the application has been completely 
defined, it can be installed on the application server Actinium. 
More in detail, by clicking on the Install on server button, the 
mapping algorithm is started, and then the application 
JavaScript listing is sent to the server. At the same time, a 

template of the application Configuration File is also created 
and stored on the file-system of the proxy server, as well as 
the dashboard template. After these steps, only the application 
logic and the graphical dashboard are defined and stored, but 
no application is actually started.  

In order to execute the application, an instance must be 
configured and started. These operations can be easily done in 
the Instantiating View by selecting the application name from 
the Installed Application drop-down menu and by filling in the 
configuration form. The local resource URIs can be selected 
from the Running Resources listed in the right menu, or by 
querying the ResourceBase through the Management View tab 
in ClickScript. For the remote resource URI, the Discovery 
View tab in ClickScript must be used. In this case, for 
example, user can search all running temperature sensors, 
situated outside the buildingB, by setting the discovery form 
as illustrated in Fig. 10. From the results table, user can copy 
the URI of the chosen resource and paste it into the 
configuration form.  

To control the execution of an application instance, the user 
can simply select its name in the Available Applications list 
and click the Load UI button. This way, the application 
dashboard is loaded in the Execution View, so that the user 
can control the remote devices and automatically display all 
updating messages (Fig. 11).  

With this new version of ClickScript, two or more 
applications can be controlled at the same time in the 
Execution View, managing them independently of one 
another. Through the Start and Stop buttons the user can 
control the execution of the application, whereas with the 
Manual/Automatic Mode buttons s/he can decide whether the 
status of the physical devices has to be controlled manually by 
the user or automatically by the business logic. Finally, 
through the Close UI button the user can close the dashboard 
in the Execution View without affecting the execution on 
server. Indeed, the application can run autonomously even if 
the user client is turned off. With the Configure button, the 
application parameters, such as the polling period or the URI 

 
 Fig. 9. Data-flow logic of the use case application 

 

 
Fig. 11. Graphic control dashboard of a running application 

 

 
Fig. 10. External temperature sensor discovery query and results 
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of physical resources, can be modified at runtime. 

VIII. CONCLUSIONS 
In this work, a distributed software architecture to discover 

and mash-up physical resources in the Web of Things has been 
defined and validated. The reasons behind this choice are 
twofold: (i) to facilitate the management of the physical 
resources of an embedded network, both in a local and in a 
global scope, and (ii) to ease the creation of mash-up 
applications interacting with CoAP-based resources. With the 
proposed architecture, smart things owners can manage 
information related to their resources, eventually sharing them 
through a public centralized database. Another contribution of 
this work is a distributed platform for the definition, execution 
and control of mash-up applications based on CoAP resources. 
This platform allows, through visual programming, the 
implementation of mash-up applications for the WoT, without 
having knowledge of both the embedded hardware and 
specific programming languages. The proposed solution was 
validated, from a functional point of view, through a simple 
use case that represents only one area of applicability in which 
the architecture may be employed. 

The peculiar characteristic of the proposed architecture 
compared to the other solutions already in the literature is 
mainly represented by the composition layer of the MaDEC 
Platform. Indeed, other architectures usually provide the user 
with the ability to exploit a set of applications already 
implemented or, however, they require high programming 
skills to implement new ones. Instead, with our approach, the 
graphical editor of the MaDEC Platform allows users to 
autonomously implement new IoT mash-up applications. 

To extend the present work, it is in plan to enhance the 
resource description with a semantic annotation with respect to 
a reference ontology, in order to help users during the public 
resources discovery phase. This way, through a semantic 
reasoner, users can perform semantic queries to the 
ResourceBase, which can produce more accurate results than a 
string-matching query.  
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