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Abstract—This paper investigates an adaptive M -ary phase-
shift keying (M -PSK) modulation scheme over Rayleigh flat
fading channels. The data rate is adapted according to the
channel state. At the receiver, the fading is estimated using pilot
symbols. To cancel the channel impact, we correct the received
signal by dividing it by the estimated value of the fading. So,
we propose to adjust the modulation level by examining the
statistics of the corrected signal. In contrast to the previous works
on the adaptive M -PSK modulation techniques, our modulation
switching protocol takes into account the channel estimation
error variance. Moreover, we derive a new closed-form expression
for the average bit error rate of the considered system.

Index Terms—Adaptive modulation, M -PSK, Channel estima-
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I. INTRODUCTION

The growing demand for wireless systems with high data

rates and quality of service requires spectrally efficient trans-

mission techniques. Classical systems with a robust nonadap-

tive modulation are generally designed to maintain an accept-

able performance in deep fades [1]. In fact, these systems are

implemented to take account of the poorest channel condi-

tions. Furthermore, to ensure the required quality of service,

robust modulation schemes decrease the system throughput.

Adaptive modulation has been proposed as a powerful method

to maintain the desired quality of service and to maximize

the transmission throughput given channel conditions [2], [3].

The basic idea of this technique is to switch between different

modulation constellation sizes depending on the channel state.

For a deep fade, a modulation with a small size constellation

is chosen to reduce the error probability and maintain the

target bit error rate (BER). However, if the channel conditions

are considered to be good, the throughput is increased by

a dense constellation modulation. Therefore, the transmitter

needs the knowledge of the channel fading state to adjust the

modulation level. For this purpose, the receiver estimates the

received signal power and sends the monitored channel fading

information to the transmitter over a reserve channel.

The choice of the modulation and the setting of the modula-

tion switching levels are major parameters to design adaptive

modulation systems. Thus, an accurate channel prediction and

a reliable feedback link between the receiver and the trans-

mitter are required to achieve good performances. Adaptive

Manuscript received November 8, 2013; revised March 14, 2014.
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modulation has been investigated by several researchers [1]–

[5]. An exhaustive analysis of adaptive multilevel quadrature

amplitude modulation (M -QAM) for Rayleigh fading channels

has been examined in [1]. The effect of the imperfect channel

prediction and the impact of the time delay on the performance

of an adaptive M -QAM modulation have been discussed in

the literature [5]. A variable rate QAM for data transmission

over selective channels is given in [6]. An adaptive trellis-

coded M -PSK modulation system for Rayleigh fading chan-

nels is proposed in [7]. A non coherent M -ary frequency

shift keying (NC-MFSK) modulation scheme for Nakagami

fading channels has been studied in [8]. An adaptive M -PSK

modulation without channel estimation has been introduced in

[9]. Recently, the authors in [10] have proposed an adaptive

transmission technique for free space optical systems with sub-

carrier phase shift keying (S-PSK) intensity modulation. The

adaptive modulation approach has been extended to multiple-

input-multiple-output (MIMO) systems in [11]–[14].

In this paper, we study an adaptive M -PSK modulation

technique with a coherent detection over Rayleigh fading

channels. To reduce the channel impact, fading estimates

are used to correct the received signal before the coherent

detection. This is done by dividing the received symbol by the

estimated value of the complex fading gain. This process is

called automatic gain control (AGC) [15]. Thus, we propose

a modulation switching protocol based on the power of the

corrected signal instead of that of the received one. In fact,

if the channel estimation is imperfect, the AGC improperly

scales the received signal and the demodulator can perform

incorrectly [15]. In this paper, we study the effect of this

demodulation on the adaptive modulation behavior. To the

best of our knowledge, the investigation of the impact of

channel estimation error on the performance of the adaptive

M -PSK modulation schemes has not been considered before.

The switching strategy and the closed-form expression of the

average BER derived in this paper are novel.

The outline of this paper is as follows. In section II, the sys-

tem and channel models are described. In section III, channel

estimation and prediction techniques based on pilot symbols

are presented. Section IV gives an analytic expression of the

BER for M -PSK system with imperfect channel estimation.

The impact of the channel estimation error is also presented

in this section. Section V discusses the adaptive modulation

procedure and the modulation switching protocol. The effect

of the channel estimation and prediction error is illustrated in
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section VI. A conclusion is given in section VII.

II. SYSTEM MODEL

Figure 1. Transmission scheme.

In this paper, we consider the discrete baseband system

model shown in Fig. 1. The scheme is summarized as follows.

The receiver sends the monitored channel fading information

to the transmitter on the reverse channel. According to the

channel conditions, the transmitter chooses a proper modula-

tion scheme from a set of M -PSK modulations with different

constellation sizes, a constant transmission power Es and a

fixed symbol rate Ts. The setting of the modulation switching

levels will be discussed in the next section. The symbol rate

and the carrier frequency remain constant. Hence, the spectrum

usage is unmodified by the approach.

The M -PSK modulated sequence is transmitted over a

correlated Rayleigh flat fading channel with an additive white

Gaussian noise (AWGN). Let us denote xn the transmitted

signal and gn the multiplicative distortion of the flat fading

channel. The received signal at time nTs is then

yn = gnxn + wn (1)

where wn is a zero-mean AWGN with variance σ2
w = N0/2.

The Rayleigh fading process is generated according to

Jakes’ model [16]. So, gn is a correlated complex Gaussian

process with zero mean and variance σ2
g . The fading auto-

correlation function is determined by the maximum Doppler

spread fd as [16]

ρm = E{gng
∗
n−m} = σ2

gJ0(2πfdTsm) (2)

where J0(.) is the zeroth-order Bessel function of the first kind

and ∗ denotes the complex conjugate. The real and imaginary

parts of gn are supposed to be mutually uncorrelated.

At the receiver, the signal yn is used to estimate the fading

multiplicative distortion gn. Having the channel estimate, we

can compensate the impact of the fading gain by dividing the

received signal by the fading estimate ĝn as [17]

zn = yn/ĝn (3)

The corrected signal zn is then fed to the decision device to

detect the demodulated data bits.

III. CHANNEL ESTIMATION AND PREDICTION

The estimation of Rayleigh flat fading channels has been

widely investigated in the literature. In this paper, we use

the well known pilot symbol assisted modulation (PASM)

technique [18]. For this method, known pilot symbols are

periodically inserted into the data sequence. At the receiver,

pilot symbols are used to estimate the channel fading. Let

us assume that the pilot sequence is of length Np. Thus for

known symbols xn (i.e. n ≤ Np), a scaled received sample is

introduced as [19]

vn = yn/xn (4)

To estimate the channel gain, scaled samples of equation

(4) are used in order to minimize the following mean square

error (MSE)

E
[

|ĝn − gn|
2
]

(5)

where ĝn denotes the estimate of gn. When scaled samples

are known, the minimum mean square solution is given by

ĝn = W
′

vn (6)

where the apostrophe denotes the transpose operator, vn =
[vn−1, · · · , vn+Ne

]
′

and W = [w1, · · · , wNe
]
′

is the set

of Ne filter coefficients obtained by solving the Wiener-

Hopf equations [20]. Indeed, given the scaled received se-

quence {vn}, the fading process has a Gaussian distribution

fg|v,x (gn|vn, xn) with a conditional mean [20]

µg|v,x = E {gn|vn, xn} = RgvR
−1
vv

vn (7)

and with a conditional covariance Rg|v,x given by [20]

Rg|v,x = Rg −RgvR
−1
vv

R
′

gv (8)

where Rgv = E
{

gnv
H
n

}

and Rvv = E
{

vnv
H
n

}

an Ne ×Ne

Toeplitz matrix, and superscript H is the transpose and com-

plex conjugate operator. Therefore, the estimate ĝn is the

conditional mean given by (7) and the Wiener filter W can

be expressed as in [20]

W
′

= RgvR
−1
vv

(9)

For n > Np, data symbols are unknown at the receiver. In

this case, the channel estimation can be performed using past

decisions x̂n to scale the received signal instead of xn

vn = yn/x̂n (10)

The channel estimate given by (6) can be expressed as

ĝn = gn + en (11)

where en denotes the channel estimation error. It is easily

proven that en is a complex Gaussian random variable with

E{en} = 0, which means that the channel estimator is

unbiased. The channel estimation error variance is [20]

σ2
e = E

{

|ĝn − gn|
2
}

= σ2
g −RgvR

−1
vv

R
′

gv (12)

Due to the feedback link delay, the channel estimate

obtained at time n is available at the transmitter at time

n + K . Therefore, to adjust the modulation size properly,

the fading prediction is needed [5]. The channel gain at time
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n can be predicted by an unbiased finite-impulse response

(FIR) filter based on a finite number (L) of past estimates

ĝn−L = [ĝn−K , ĝn−K−1, · · · , ĝn−K−(L−1)]
′

[5]. The unbi-

ased predicted channel gain is given in [5] by

g̃n = Φ
′

ĝn−L (13)

where Φ is the optimal linear predictor in the MSE sense given

by [5]

Φ
′

= RgĝR
−1
ĝĝ

(14)

where Rgĝ = E
{

gnĝ
H
n−L

}

and Rĝĝ = E
{

ĝn−Lĝ
H
n−L

}

.

The prediction error variance is given by [5]

σ2
p = E

{

|g̃n − gn|
2
}

= σ2
g −RgĝR

−1
ĝĝ

R
′

gĝ (15)

IV. ERROR PROBABILITY FOR M -PSK

Once the channel estimate ĝn is evaluated, it is passed to

the demodulator and sent to the transmitter. To compensate the

channel effect, we divide the received signal yn by ĝn. Thus,

the demodulation is performed using the following decision

variable

zn = yn/ĝn (16)

Unlike previous works, we propose in this paper a modula-

tion switching strategy based on the power of the decision

variable zn instead of that of the received signal yn. In

fact, demodulation decision regions must correspond to the

transmitted M -PSK constellation. In this work, we assume

that the channel does not vary significantly over two symbol

blocks.

A. Decision variable statistics

The decision variable of equation (16) depends on the

channel estimate. It can be written as [17]

zn =
yn
ĝn

= xn +
wn − enxn

ĝn
= xn +mn (17)

Let us derive the probability distribution function (PDF) of

the ”final-noise” mn conditioned on xn and ĝn. It is known

that the channel estimate ĝn is a zero mean complex Gaussian

random variable. Since channel estimation error en and ĝn
are uncorrelated, it is easily shown that the channel estimator

variance is

var(ĝn) = σ2
ĝ = σ2

g − σ2
e (18)

The Gaussian real and imaginary parts of wn and enxn

are independent. Thus, both wn and enxn are circularly

symmetric. This yields to the circular symmetry of ĝn [17].

So, the phase of the channel estimate arg(ĝn) can be ignored,

and a new random variable can be used [17]

m
′

n = mn arg(ĝn) =
wn − enxn

|ĝn|
= αw

′

n (19)

where w
′

n = wn − enxn and α = 1/ |ĝn|.

Given the transmitted symbol xn, the noise w
′

n is the sum

of two independent Gaussian variables with independent real

and imaginary parts. So, the conditional PDF of w
′

n is

p(w
′

n|xn) = p
(

ℜ[w
′

n],ℑ[w
′

n]
)

=

1

2π (σ2
w + |xn|2σ2

e)
exp

[

−
|w

′

n|
2

2 (σ2
w + |xn|2σ2

e)

]

(20)

where ℜ[·] and ℑ[·] denote the real and the imaginary parts.

For M -PSK modulation, |xn|
2 = Es for all n. So, the

conditional PDF p(w
′

n|xn) does not depend on xn

p(w
′

n|xn) = p(w
′

n) =
1

2πσ2
T

exp

(

−
|w

′

n|
2

2σ2
T

)

(21)

where σ2
T =

(

σ2
w + Esσ

2
e

)

.

B. Instantaneous BER

For adaptive modulation systems, the constellation size is

adjusted based on the instantaneous SNR. Given the channel

gain, the ”final noise” is Gaussian with the conditional PDF

p (mn|xn, ĝn) = p
(

m
′

n|xn, ĝn

)

=
|ĝn|

2

2πσ2
T

exp

(

−
|w

′

n|
2 |ĝn|

2

2σ2
T

)

(22)

It is noted that the PDF p (mn|xn) is not Gaussian. The

instantaneous estimated SNR is then

γ̂n =
Es |ĝn|

2

σ2
T

(23)

The relationship between the true instantaneous SNR and the

estimated instantaneous SNR is given by

γ̂n =
Es |ĝn|

2

σ2
w + Esσ2

e

≈
Es |gn|

2
+ Esσ

2
e

σ2
w + Esσ2

e

=
γn + Esσ

2
e/σ

2
w

1 + Esσ2
e/σ

2
w

≈
γn

1 + Esσ2
e/σ

2
w

(24)

For a given SNR γ, the BER of the M -PSK modulation

with a Gray mapping in AWGN can be approximated by

Pb(M,γ) =
2

k
Q
[

√

2γ sin
( π

2k

)]

(25)

where k = log2(M) is the number of bits per symbol. This

BER expression will be used by the transmitter to adjust

the modulation size. Unfortunately, it is not invertible in its

arguments M and γ̄. It was suggested in [21] to approximate

the BER expression by the following generic form

Pb(M,γ) = c1 exp

[

−
c2γ

2kc3 − c4

]

(26)

where c1, c2, c3 and c4 are real constants. The determination of

these constants is a nonlinear curve-fitting problem. It can be

solved by minimizing the least-squares criterion. Three models

for BER approximation with different values of {ci} are given

in [21].
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C. Average BER for fixed M -PSK modulation

Using the Rayleigh distribution of |ĝn|, it was shown in [17]

that the PDF of α = 1/ |ĝn| is

p(α) =
2

σ̃2
gα

3
exp

(

−
α−2

σ̃2
g

)

; α > 0 (27)

The PDF of mn can be obtained from (21) and (27) [17]

p (mn) = p
(

m
′

n

)

=

∫ ∞

0

p
(

m
′

n|α
)

dα

=

∫ ∞

0

p
(

m
′

n|α
)

p(α)dα

=
γ̄e

π (1 + γ̄e|mn|2)
2 (28)

where γ̄e is defined as [17]

γ̄e =
σ̃2
g

σ2
w + Esσ2

e

(29)
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Figure 2. γ̄e vs γ̄0 for σ2
e = 10−5 and σ2

e = 10−4.

Figure 2 illustrates the impact of the channel gain estimation

error on the system SNR. For smaller SNRs, the estimation

error σ2
e has a negligible effect. However, for higher SNRs, the

discrepancy between γ̄e and γ̄0 is important. For σ2
e = 10−5,

a saturation floor is observed at 50 dB.

For systems with a perfect channel estimation (σ2
e = 0), the

”final noise” PDF is [17]

p (mn) =
γ̄0

π (1 + γ̄0|mn|2)
2 (30)

where γ̄0 is the average free noise signal-to-noise ratio

γ̄0 =
σ2
g

σ2
w

(31)

It was shown in [17] that the average symbol error rate

(SER) with a perfect channel estimation is

Ps,0 =
M − 1

M
− ζM

[

1

2
+

1

π
tan−1

(

ζM cot
π

M

)

]

(32)

where

ζM =

√

γ̄0 sin
2
(

π
M

)

1 + γ̄0 sin
2
(

π
M

) (33)

The BER can be approximated by

Pb,0 =
Ps,0

log2(M)
(34)

For an imperfect channel gain estimation, the BER of the

M -PSK system is obtained by replacing γ̄0 by γ̄e [17]. In fact,

it can be seen that the ”final noise” PDF has the same form

for both perfect estimation (30) and imperfect estimation (28)

cases.

The BER degradation due to the channel gain estima-

tion error is plotted in Fig. 3. Curves correspond to M ∈
{4, 16, 64, 256}, Wiener filter length Ne = 20 and normalized

Doppler spread fdTs = 10−2. It is shown that, for higher

SNRs, the BER degradation is not negligible. The channel

estimation error can lead to a 2 dB performance loss. Hence,

to set the modulation size switching levels, it is important to

take into account the channel estimation error.

0 10 20 30 40 50
10

-6

10
-4

10
-2

10
0

SNR [dB]

B
E

R

 

 

Perfect channel estimation
Imperfect channel estimation

M = 4, 16, 64, 256

Figure 3. Average BER degradation due to channel gain estimation error.
M ∈ {4, 16, 64, 256}, Ne = 20 and fdTs = 10−2.

V. ADAPTIVE MODULATION

Wireless radios are used over a wide range of link con-

ditions. Furthermore, a small error probability and a high

transmission throughput are required. Adaptive modulation is a

powerful method to maintain the desired BER and to maximize

the transmission throughput given channel conditions [1]–[5].

The basic idea of this technique is to switch between different

modulation constellation sizes depending on the channel state.

So, adaptive modulation improves the use of the channel

capacity [1]. The choice of the modulation mode and the

determination of the switching metric are major parameters

to design an adaptive modulation. In this context, we propose

a fixed power M -PSK scheme with a variable discrete rate

of transmission. All uncertainly about the the channel gain

(estimation error and prediction error) are considered.
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A. Modulation switching protocol

An important issue in an adaptive modulation system is the

strategy for the choice of the modulation level. The transmitter

adjusts the modulation size based on the required BER and the

predicted instantaneous SNR

γ̃n =
Es |g̃n|

2

σ2
w

(35)

Let us consider an adaptive M -PSK scheme with N dif-

ferent modulation sizes (M1,M2, · · · ,MN) varying from the

lower constellation size to the higher constellation size with

an increasing order. For adaptive discrete rate modulation

systems, the SNR range is divided to N regions given by

Rl = [γs
l , γ

s
l+1), where (γs

0 , γ
s
1 , · · · , γ

s
N ) are the switching

levels and γs
N = ∞. If the predicted SNR γ̃n is in the region

Rl, the associated modulation level Ml(γ̃n) = 2kl is selected

and transmitted. When the SNR γ̃n is less than γs
0 , there is no

transmission. So, γs
0 is the channel cutoff SNR below which

transmission is stopped.

For a Gray mapping and a constellation size Ml(γ̃n) = 2kl ,

the instantaneous BER can be expressed from (24) and (26)

as

Pb(γ̃n, γn, σ
2
e) = c1 exp

[

−
c
′

2γn
2c3kl − c4

]

(36)

where

c
′

2 =
c2

1 + Esσ2
e/σ

2
w

(37)

This BER expression depends on the channel gain and the

estimation error variance σ2
e . So, the transmitter can use

equation (12) to evaluate σ2
e .

B. Average BER

The average instantaneous BER is given by averaging (36)

over the true SNR γn [5]

P̄b(γ̃n, σ
2
e , σ

2
p) =

∫ ∞

0

Pb(γ̃n, γn, σ
2
e)p(γn|γ̃n)dγ (38)

where the conditioned PDF p(γn|γ̃n) is given in [5]

p(γn|γ̃n) =
U(γ)U(γ̃ − γ̄p)

γ̄p
exp

[

−
γ̃ + γ − γ̄p

γ̄p

]

×I0

(

2

γ̄p

√

γ(γ̃ − γ̄p)

)

(39)

where U(·) is the Heaviside’s step function, I0(·) is the zeroth

order modified Bessel function and

γ̄p =
γ̄0σ

2
p

σ2
g

(40)

where σ2
p is the prediction error variance given by (15).

Following results presented in [5], the average instantaneous

BER is

P̄b(γ̃n, σ
2
e , σ

2
p) =

c1βl

βl + c
′

2γ̄p
exp

[

c
′

2(γ̄p − γ̃n)

βl + c
′

2γ̄p

]

(41)

where

βl =
(

2c3kl − c4
)

(42)
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Figure 4. Impact of channel estimation and prediction error variances on
the instantaneous BER of the 64-PSK modulation. The BER is evaluated for
γ̄0 = 30 dB using the model 3 of [21] and equation (41).

The impact of both channel estimation and prediction error

variances in the BER is shown in Fig. 4. In this figure, we have

plotted the instantaneous BER of the 16-MPSK modulation

versus the predicted SNR γ̃n for γ̄0 = 30 dB and different

values of σ2
e and σ2

p . It is shown that a small prediction error

variance σ2
p = 10−3 has a negligible impact. However, a loss

of 1 dB is observed for σ2
p = 10−1. The channel estimation

error variance has a more noticeable effect. At a BER of 10−6,

the performance loss due to σ2
e = 10−3 is about 3 dB.

The average BER of an adaptive M -PSK can be obtained

using definition in [21]

BER(σ2
e , σ

2
p) =

N−1
∑

l=0

kl

∫ γs

l+1

γs

l

P̄b(γ̃n, σ
2
e , σ

2
p)p(γ̃n)dγ̃n

N−1
∑

l=0

kl

∫ γs

l+1

γs

l

p(γ̃n)dγ̃n

(43)

VI. SPECTRAL EFFICIENCY

The spectral efficiency of any modulation scheme is defined

as the average data rate per unit bandwidth. When a M -PSK

modulation of size Ml = 2kl is used, the instantaneous

throughput is kl/Ts (bps). Assuming Nyquist data pulses

(the transmitted signal bandwidth is B = 1/Ts), the spectral

efficiency is then

ηB =
R

B
=

N−1
∑

l=0

kl

∫ γs

l+1

γs

l

p(γ̃)dγ̃ (44)

where R is the data rate.

Besides spectral efficiency, the system outage probability is

an important metric for the performance analysis. The outage

probability is defined as the probability that the received SNR

is bellow the cutoff SNR γs
0 . This latter corresponds to the

minimum acceptable SNR which ensures the required BER.

In this section, we consider the maximization of the spectral

efficiency with a constant transmit power and an instantaneous
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BER constraint

P̄b(γ̃n, σ
2
e , σ

2
p) ≤ BERd (45)

This condition must be satisfied for all SNR in the correspond-

ing region Rl = [γs
l , γ

s
l+1) [5]

P̄b(γ̃n, σ
2
e , σ

2
p) ≤ P̄b(γ

s
l , σ

2
e , σ

2
p) = BERd, ∀γ̃ ∈ Rl (46)

Therefore, the optimal rate region boundaries can be obtained

from (41) and (46)

γs
l = γ̄p −

βl + c
′

2γ̄p
c
′

2

ln





(

βl + c
′

2γ̄p

)

c1βl

BERd



 (47)

Figure 5 gives the optimal rate adaptation based on (47) for

different values of σ2
e and σ2

p . Dotted curves correspond to the

ideal scenario with a perfect channel estimation and prediction

which serves as a benchmark. The instantaneous number of

bits per symbol k(γ̃n) increases as the instantaneous predicted

SNR γ̃n increases. Once again, it can be seen that the channel

estimation error has more impact than the prediction error.

For a given BERd, σ2
e and σ2

p , the optimum switching levels

{γs
0 , γ

s
1 , · · · , γ

s
N} can be easily obtained from Fig. 5.
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Figure 5. Optimal rate adaptation for BERd = 10−4 and γ̄0 = 30.

The variation of the spectral efficiency as a function of γ̄0
for different values of σ2

e and σ2
p is depicted in Fig 6. Solid

curves and dashed curves correspond respectively to target

BERd = 10−3 and BERd = 10−6. At an SNR γ̄0 = 35
dB and for a BERd = 10−3, an estimation error variance

of σ2
e = 10−3 reduces the spectral efficiency from 4 bps/Hz

to 3 bps/Hz. The impact predication error σ2
p = 10−3 is

insignificant. Nevertheless, this estimation error variance has

a noticeable impact on the outage probability specially for

higher SNRs as it is illustrated in Fig 7. In fact, this value

of σ2
e reduces the performance of the 4-PSK modulation and

has a negligible impact on modulations with M > 4. This

explains the degradation of the outage probability with a small

estimation variance.
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Figure 6. Spectral efficiency vs γ̄0 for BERd = 10−3 (solid curves) and
BERd = 10−6 (dashed curves).
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Figure 7. Outage probability vs γ̄0 for BERd = 10−3 (solid curves) and
BERd = 10−6 BERd = 10−6 (dashed curves).

VII. CONCLUSION

A commonly used coherent detection technique in a

Rayleigh flat fading channel consists in dividing the received

signal by the estimated fading in order to compensate for

amplitude and phase deviations. In this paper, we investigated

an adaptive M -PSK modulation scheme for Rayleigh flat

fading channels when the received signal is corrected with

imperfect channel estimates. The combined impact of channel

estimation and channel prediction errors is evaluated.

The evaluation of the BER conditioned on the estimated

and predicted values of the channel gain has been presented.

The BER expression takes into account the channel estimation

error variance. The receiver uses this BER expression to adjust

the modulation size based on the required BER.

Unlike previous works, the modulation switching strategy

that we propose is based on the power and statistics of

the corrected signal. The influence of the imperfect AGC is
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analyzed. In this paper, we have considered an adaptive rate

system with a constant power. The presented analysis can be

extended to variable power systems following [5], [21].
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