

Abstract— Fault localization is considered one of the most

challenging activities in the software debugging process. It is vital

to guarantee software reliability. Hence, there has been a great

demand for automated methods that can pinpoint faults for

software developers. Various fault localization techniques that

are based on graph mining have been proposed in the literature.

These techniques rely on detecting discriminative sub-graphs

between failing and passing traces. However, these approaches

may not be applicable when the fault does not appear in a

discriminative pattern. On the other hand, many approaches

focus on selecting potentially faulty program components

(statements or predicates) and then ranking these components

according to their degree of suspiciousness. One of the difficulties

encountered by such approaches is to understand the context of

fault occurrence. To address these issues, this paper introduces

an approach that helps in analyzing the context of execution

traces based on control flow graphs. The proposed approach uses

the edge-ranking of basic blocks in software programs using

Dstar that proved to be more effective than many fault

localization techniques. The proposed method helps in detecting

some types of faults that could not be previously detected by

many other approaches. Using Siemens benchmark, experiments

show the effectiveness of the proposed technique compared to

some well-known approaches such as Dstar, Tarantula, SOBER,

Cause Transition and Liblit05. The percentage of localized faulty

versions versus the percentage of code examined is taken as a

measure. For instance, when the percentage of examined code is

30%, the proposed technique can localize nearly 81% of the

faulty versions, which outperforms the other four techniques.

Index Terms—Bug localization, basic block, control flow

graph, edge – ranking.

I. INTRODUCTION

anual software debugging is not only a time consuming,

tedious and costly task but also error-prone [1]-[2]. This

Manuscript received September 11, 2017; revised October 28, 2017. Date

of publication December 21, 2017.
Authors are with the Faculty of Computers and Information, Helwan

University, Egypt (e-mails: 1marwagaber.24@yahoo.com, {amal.aboutabl,

w_behaidy}@fci.helwan.edu.eg).
Digital Object Identifier (DOI): 10.24138/jcomss.v13i4.402
1Corresponding author.
2The words fault and bug are used interchangeably in this paper.

process is crucial yet resource-intensive in software

engineering [3], with 50% to 80% of software maintenance

costs attributed to fix [4]. An intuitive way to localize faults2

in software programs is to analyze the memory dump of the

faulty program. Another way is to insert a "print" statement

around a suspicious region. However, all these manual

solutions proved to be inefficient in locating bugs. Various

approaches have been introduced in literature to automate the

process of locating faults in efficient ways. Slice-based

methods have been introduced to reduce the domain of

debugging search via slicing. If a test case fails due to an

incorrect value of a variable at a statement, then as fault

should be found in the slice associated with that variable-

statement pair [6]. Static slicing and all extended approaches

based on slicing [7]-[8] do not make use of the input values

that discover the fault. Moreover, dynamic slicing methods,

which determine program slices to further reduce the

debugging search domain for possible locations of a fault, may

consume excessive time and space. Renieris et al [10] have

proposed an approach based on nearest neighbour queries

where the distance between program execution abstractions is

determined. This approach assumes that there is one faulty run

and a number of successful runs. The successful run that is

most similar to the faulty run is determined based on a

distance criterion, and then the difference between both runs is

used to locate the fault.

Amongst the most effective diagnostic techniques is Spectra

Based Fault Localization (SBFL) [10]-[13], also known as

code coverage techniques. SBFL, which has recently shown

much popularity to be a very efficient and simple technique in

software debugging, focuses on identifying, then assigning a

suspicious value for each software component (statement,

predicate, function, etc.) and finally ranking them according to

how likely they are regarded as fault-relevant [15].

However, SBFL suffers from some drawbacks that cause

incorrect results. One of these problems is that SBFL cannot

provide enough information to understand the context of

faults, because of assessing the suspiciousness of statements or

predicates individually [16]. Furthermore, in some approaches

as in [17]-[21] predicates are considered in isolation from each

other, which may lead to reducing the ability to detect certain

faults that are generated from a specific transition from one

Graph Mining for Software Fault Localization:

An Edge Ranking based Approach

 Marwa Gaber Abd El-Wahab1, Amal Elsayed Aboutabl, Wessam M.H. EL Behaidy

M

178 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2017

1845-6421/12/402 © 2017 CCIS

point (predicate) to another[22]. Many approaches use graph

mining for software bug localization. These approaches rely

mostly on extracting discriminative sub-graphs as suspicious

areas in programs [21] -[23]. In fact, these discriminative sub-

graphs do not provide information, which effectively helps in

finding the difference between correct and incorrect

executions paths.

In this paper, a context-aware bug localization technique

that uses control flow graphs is proposed. The execution

behavior for failing and passing paths is represented by control

flow graphs that are used later in analyzing the executed test

cases. The proposed method provides the context of bug to

facilitate identifying, understanding and fixing the bug.

The main contributions of this paper include three aspects:

1. Using a lightweight approach that is fully automatic and

broadly applicable based on execution runs.

2. Combining control flow edge coverage with block

coverage and calculating their suspiciousness to rank the

basic blocks in descending order of their suspiciousness

value.

3. The proposed method produces promising results

especially with some type of faults that cannot be

localized using some SBFL methods such as missing

statements.

This paper is organized as follows: Section 2 presents

related work. Section 3 gives a detailed description of the

proposed technique, followed by an illustrative example and

experimental evaluation. Finally, Section 4 concludes this

paper and presents the future work.

II. RELATED WORK

 Many approaches have been proposed for automating fault

localization and improving the rate of identifying faults[24].

Graph mining based approaches as in [22], [24]-[25] use the

graph structure to demonstrate the execution behavior of

software programs. In these approaches, graph nodes represent

code units such as predicates, functions or basic blocks and

graph edges represent the relations among these code units.

Recently, many studies have utilized graph-mining techniques

in software fault localization. The behavior of a software

program can be represented as a call graph or a subset of a

control flow graph. These techniques may mine the dynamic

execution graphs, which are labelled as correct or incorrect

according to the termination state of each execution. The

termination state is determined as correct or incorrect based on

whether the expected results are met.

Di Fatta et al. [25]and Liu et al. [26] propose approaches that

rely on applying closed frequent pattern mining and using

these patterns as features for training a classifier. However, in

large-scale software programs, the number of frequent sub-

graphs becomes large therefore increasing mining complexity.

Moreover, these approaches do not consider the weight of

each transition in their analysis. Due to the expensive

computation of applying closed frequent pattern mining to

fault localization, discriminative pattern mining approaches

have been proposed by many studies [27]-[29].

In [21], the proposed approach is based on LEAP algorithm

[28] to extract program behavior graphs in two levels of

granularity: basic blocks and function calls. The extracted

discriminative sub-graphs can separate incorrect executions

from correct ones, then, the informative signature of faults is

determined. Top-K LEAP is an entropy-based algorithm,

which identifies the top k ranked discriminate sub-graphs. For

some non-deterministic faults, for which the corresponding

signatures are not highly discriminative, discriminative pattern

mining methods might be inefficient. These approaches may

also have problems in scalability.

Some approaches apply data mining algorithms on weighted

call graphs[30]. According to these approaches, edge weight

plays an important role in finding faulty method calls in faulty

executions. However, the main problem is large granularity

since using only method call graphs is insufficient to find all

types of faults. Variants similarity coefficients are used in

ranking program components. Tarantula[11]is one of the early

techniques introduced for SBFL using statement-hit spectra. It

is based on using the coverage statistics to assign a

suspiciousness value to each statement in the program.

Tarantula is based on the idea that statements, which are

executed by faulty executions are more likely to be suspicious

than those which are executed in successful executions.

In [31]-[32], Ochiai and Jaccard similarity coefficients have

also been used for fault localization. They are based on the

same heuristic as Tarantula except that they use a different

formula to compute suspiciousness. According to Abreu et al.

[32], Ochiai formula is more effective in many experimental

studies than Tarantula. Naish et al. [14]have introduced

another formula called Op2, which proved to be effective in

programs that have a single fault. In [17], the proposed

statistical-based technique is based on separating effects of

different faults and identifying predictors that are associated

with individual faults. These predictors uncover the

circumstances under which faults happen and reveal the

frequencies of modes of failure, which consequently facilitates

prioritizing debugging efforts to detect bugs.

Liu et al.[1] have proposed an approach called SOBER which

compares evaluation patterns of predicates of both failed and

successful executions to isolate fault-relevant predicates.

Causes transition [33] statistical-based approach, which is

abbreviated as CT, is an extension of the previous work of

Zeller et al. [34], which is based on using the Delta Debugging

algorithm to narrow down the state difference between failing

and successful executions according to their memory graphs.

CT extends this idea by adding the capability of searching in

time to searching in space. Searching in time seeks moments

when faulty variables start to cause failures in the program.

Despite the effectiveness of SBFL and statistical-based

techniques, they ignore dependencies in a program where each

component in a program is considered isolated from each

other and regarded as independent, which may reduce their

ability in detecting faults. However, the coverage run-time of

program components is calculated individually. Many fault

localization studies that use statement or predicate hit spectra

neglect the dependency relationship between program entities,

which may locate irrelative entities [35].

M. GABER et al.: GRAPH MINING FOR SOFTWARE FAULT LOCALIZATION 179

In this paper, the proposed approach preserves the consistency

of program entities in coverage and it considers the context of

faults via path analysis.

III. PRELIMINARIES AND THE PROPOSED FAULT-

LOCALIZATION TECHNIQUE

A. Preliminaries

Definition 1. A software program ∏ is formed by a

sequence of N statements.

Definition 2. A test suite T = {t1, t2… tm} is a collection of

test cases that are intended to test whether the program works

as expected or not, where m=|T| is the number of test cases.

Definition 3. A test case is a tuple, where I is a

collection of input variables for determining whether the

program being tested works as expected. is the expected

result. If ∏, the test case is said to be successful and

faulty otherwise.

Definition 4. A basic block B in the software program is a

sequence of statements or expressions that do not include the

transfer of control such that if one of these statements is

executed, all other statements are also executed.

Definition 5. Control flow graph CFG= {N, E, P} is used to

represent execution paths where N= {N1, N2, ···, Nm} is the set

of nodes which represent basic blocks in the program, E= {E1,

E2, ···, En} is the set of graph edges representing transitions

from one basic block to another and P= {P1, P2, ···, Pk} is the

set of execution paths

Fig. 1 illustrates the control flow graph for a procedure called

max and its control flow graph (CFG).

procedure Max () {

1 int a =read_int();

2 int b =read_int();

3 if (a > b) {

4 print (a);

5 return ;

6 }

7 print(b);

8 }

(a) Procedure Max.

(b) CFG of Max.

Fig. 1.Function max with its control flow

B. The proposed fault localization technique

Given a faulty program to be debugged and a set of test

cases for this program, the proposed method performs

software-debugging going through four main phases:

1. Constructing control flow graphs (CGF) for all test

cases.

2. Ranking graph nodes.

3. Ranking graph edges.

4. Constructing node suspiciousness list.

Step 1: Constructing control flow graphs (CGF) for all test

cases.

Before building a CFG, the program being tested is

instrumented by inserting a “print” statement in each basic

block of the program. In this phase, the block-hit spectrum is

used to collect execution traces of a program for each test

case. The main idea behind tracing basic blocks is to cover

different types of faults such as “missing statements” and

perform context-aware fault detection.

Each program is executed with different failing and passing

runs. Each execution path is labelled as failed or passed

according to the termination state of the program. Then, the

CFG is constructed based on the sequence of blocks covered

by the execution path. If i and j are two consecutive basic

blocks in an execution path where i appears first, then these

two blocks are represented by nodes in the CFG and there is a

directed edge from i to j.

Step 2: Ranking graph nodes

In this phase, the suspiciousness score of each node (basic

block) is calculated. A suspiciousness metric is a binary

similarity metric between the block coverage vector and the

result vector (Fig. 2). Various suspiciousness metrics exist as

Jaccard metric, Tarantula metric, Ochiai metric, and D* (D-

star) metric [36]. In the proposed method, D* (D-star) is used

with * = 2 to compute the suspiciousness score of each node

[37]. The D2 is defined as follows:

 𝐷2 =
Ncf

2

Nuf+Ncs

(1)

where Ncf is the number of failed test cases that cover a

program entity, Nuf is the number of failed test cases that do

not cover a program entity and Ncs is the number of passed test

cases that cover a program entity.

The D* metric computes the suspiciousness score at the

level of program statements which prove its effectiveness over

38 other metrics used for evaluation. However, the main

problem with using a statement as the program entity is that

statements are considered in isolation from each other and

regarded as independent units that may reduce the ability to

detect all types of faults. In the proposed method, the use of

D* is adapted such that the program entity of concern here is

the basic block not the statement. The basic block coverage

matrix represents the coverage information for each test case

where (X) at basic block Bi and test case tj indicates that Bi is

covered by tj. Each entry in the result vector indicates if that

test case is faulty or successful.

After calculating the suspicious score for all nodes of the

graph that represent basic blocks of the faulty program, all

T F

EXIT

ENTRY

1

2

3

4
7

5

180 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2017

nodes are sorted in a descending order to form the ranking list

LN of suspicious basic blocks.

Fig. 2. Coverage information for each test and basic blocks

 Step 3: Ranking graph edges

Because of dependencies, a suspicious node may affect all

execution paths that cover this node and triggers the fault.

Therefore, ranking nodes suspiciousness scores individually

might report incorrect results. To incorporate dependencies

between nodes and pinpoint the block that is the root cause of

a fault, suspiciousness score is calculated for each edge in the

graph based on the same similarity metric, D*, adopted for

ranking nodes. The definition of the D*, as (1) where * is

adapted to calculate a suspiciousness score for each edge e.

In analogy to the block coverage matrix, an edge coverage

matrix and a result vector are constructed (Fig. 3).

Each column in the edge column matrix represents an edge

coverage vector that is used to compute the edge

suspiciousness score. An (X) for edge Ei and test case tj

indicates that Ei is covered by tj.

Fig. 3. Edge Coverage Matrix and Result Vector

Step 4: Constructing node suspiciousness list

Many studies provide a list of ranked basic blocks only after

calculating their suspiciousness value using one of the

similarity coefficients. In this work, edge ranking is

incorporated into the suspiciousness value of each node. After

ranking edges that appear in the CFG of a faulty execution, the

suspiciousness score of each edge is assigned to both of its

incident nodes. For example, if an edge e is incident to nodes x

and y, the suspiciousness value of e is assigned to both x and

y. If node x has a set of edges Ex to which it is incident, the

maximum edge suspiciousness value of all edges in Ex is

assigned to x. Then, all nodes are sorted in a descending order

of their suspiciousness values to form the ranking list LE of

suspicious basic blocks according to the suspiciousness value

of their edges.

If more than one node has the same suspiciousness value,

these nodes are ranked according to their suspiciousness value

in the LN list formed in step 2. Finally, the node that has the

highest suspiciousness value should be inspected first. If it

does not contain the fault, the node with the next highest

suspiciousness value is inspected and so on until the fault is

found.

IV. ILLUSTRATIVE EXAMPLE

 The previous steps are illustrated through one of the

Siemens benchmark programs, namely, schedule v4. Siemens

benchmark [38] programs are used in this work to test the

effectiveness of the proposed technique as will be explained in

later sections. Fig. 4 shows a code fragment of schedule v4,

which is a priority scheduler. This fragment contains only one

fault at line 23.

As step 1, The CFG of the chosen code fragment is

generated. It contains 33 statements and 9 basic blocks. Nodes

represent basic blocks of the faulty program and each edge in

the CFG represents a control flow transition between one basic

block to another.

As shown in Table 1, nodes and edges that appear in CFG in

Fig. 4
TABLE 1

NODES AND EDGES OF CFG OF FIG. 4

Nodes

B1

B2

B3

B4

B5

B6

B7

B8

B9

Edges

B1 B3

B1 B2

B3 B4

B3 B9

B4 B5

B6 B7

B7 B5

B8 B1

In step 2, Table 2 shows the ranking of nodes in the fragment

code using the D2 similarity metric as in (1). According to

Table 2, B7 is the first block to be checked for the fault, then

B3 and so on. The fault will be detected in the second basic

block B3. Using suspicious basic blocks ranking individually

may not report accurate results. Because of dependencies, a

M. GABER et al.: GRAPH MINING FOR SOFTWARE FAULT LOCALIZATION 181

suspicious node may affect all execution paths that cover this

node.

Lines Stat. Control Flow Graph Code
1 1 Else

2 - {//B8
3 2 upgrade_process_prio(prio, ratio);
4 - }//B9
5 3 break;
6 4 case NEW_JOB:

7 - }
8 5 void upgrade_process_prio(prio, ratio)

9 6 int prio;

10 7 float ratio;
11 8 int count;

12 - {//B1: the following statements are in one block called B1

13 9 int n;

14 10 Ele *proc;

15 11 List *src_queue, *dest_queue;
16 12 if (prio >= MAXPRIO)

17 - {//B2

18 13 return;

19 - }//B3

20 14

src_queue = prio_queue[prio];

21 15 dest_queue = prio_queue[prio+1];

22 16 count = src_queue->mem_count;

23 17 if (count > 1)//bug, it should be if (count>0)

24 - {//B4

25 18 n = (int) (count*ratio + 1);

26 19 proc = find_nth(src_queue, n);

27 20 Ele *find_nth(f_list, n) List *f_list; int n;
28 - {//B5
29 21 Ele *f_ele;

30 22 int i;

31 23 if (!f_list) {

32 24 void unblock_process(ratio)

33 25 float ratio;

34 - {//B6

35 26 int count;

36 27 int n;

37 28 Ele *proc;

38 29 int prio;

39 30 if (block_queue)

40 - {//B7

41 31 count = block_queue->mem_count;
42 32 n = (int) (count*ratio + 1);

43 33 proc = find_nth(block_queue, n);

Fig. 4. Fragment of schedule v4 program (Siemens Test Suite)

T

F

B1

B2

B3

B4

B6

B8

B9

B5

B7

182 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2017

TABLE 2

FRAGMENT CODE BASIC BLOCKS RANKING USING D2
 BASED ON BLOCKS

SUSPICIOUSNESS VALUES ONLY.

Rank

Basic blocks

58.615 B7

49.629 B6

58.363 B3

56.828 B9

56.828 B8

56.828 B1

56.081 B5

44.645 B4

0.426 B2

In step 3, the suspiciousness score is computed for each

edge in the CFGs of all execution traces using D2. Edges are,

then, ranked in descending order as in Table 3.

As shown in Table 3, (B3, B9) edge is ranked first which

means that this transition has the greatest suspiciousness score

and it should be inspected first, (B6, B7) is second and so on.

In step 4, nodes are ranked according to the suspiciousness

score of their edges. For example, the suspiciousness score of

edge (B3, B9) is 64.8918 so the suspiciousness score of

B3 = 64:8918 and B9 = 64:8918.

TABLE 3

FRAGMENT CODE EDGE RANKING USING D2.

Rank

Edges

64.891 B3 B9

58.615 B6 B7

58.615 B7 B5

58.363 B1 B3

56.828 B8 B1

44.645 B3 B4

44.645 B4 B5

0.4269 B1 B2

In case node B1 has a set of edges Ex = {(B1, B2), (B1;

B3)} to which it is incident. The suspiciousness score of (B1,

B2) and (B1, B3) is 0.4269 and 58.363 respectively.

Therefore, node B1 is assigned the maximum edge

suspiciousness value in Ex which is 58.363. With the same

procedure, node B3 is assigned the suspiciousness value

64.891.

In Table 4, a fragment of a ranking list of nodes according to

suspicious values of their edges. This list is noted LE.

TABLE 4

FRAGMENT OF RANKING VALUES OF NODES ACCORDING TO EDGES RANKING

Rank

Basic Blocks

64.891 B3

64.891 B9

58.615 B6

58.615 B7

58.615 B5

58.363 B1

56.828 B8

44.645 B4

0.4269 B2 B2

In case, there are more than one node has the same

suspiciousness value such as B3 and B9, step 2 is used to rank

these nodes according to their position in LN. The final ranking

(See Table 5) orders basic blocks in the order they should be

inspected by developers to find the fault. After incorporating

edge ranking, the faulty basic block is the first on the list

instead of the second.

TABLE 5

FINAL BASIC BLOCKS RANKING LIST AFTER INCORPORATING EDGE RANKING

Rank

Basic blocks

1 B3

2 B9

3 B7

4 B5

5 B6

6 B1

7 B8

8 B4

9 B2

M. GABER et al.: GRAPH MINING FOR SOFTWARE FAULT LOCALIZATION 183

V. EXPERIMENTAL STUDY

 In this paper, the Siemens test suite [38] is used as a

benchmark to compare the proposed method to other well-

known approaches for fault localization. The experiments are

conducted on Ubuntu-15.04 platform using GCC 4.9.2

compiler.

 To evaluate the proposed technique, the EXAM score [39]

is used as a measure. The EXAM score indicates the

percentage of program elements (number of examined basic

blocks) that needs to be examined before the first fault is

reached. The lower the EXAM score, the better the

performance. EXAM score is computed as follows:

𝐸𝑋𝐴𝑀 score =
Rank of the first faulty program element

Total number of executable program elements
× 100%

(2)

The EXAM score is used to evaluate the result based on the

generated ranking lists in case using D* as * = 2 with basic

blocks and incorporating edge ranking in basic blocks ranking.

Furthermore, it is used for comparing the proposed technique

to some well-known approaches that use SBFL.

A. Siemens Test Suite

 This suite was originally prepared by Siemens

Corporation Research with the aim of studying test adequacy

criteria [40]. Many software fault localization studies as in [1],

[9], [37], [41]-[44] used the Siemens test suite to evaluate their

performance. The suite contains seven programs with different

types of injected faults. Every version contains only one fault.

The seven programs in this suite perform a variety of tasks:

print-tokens and print-tokens2 are lexical analyzers, schedule1

and schedule2 are priority schedulers, replace performs

pattern matching and substitution, tot-info computes statistics

given input data and tcas is an aircraft collision avoidance

system. Some versions have been excluded from the

experiments in the same manner as several previous studies

did as in [12], [31]-[35] due to the absence of faulty test cases

in some versions or the absence of syntactic differences from

correct versions of the program. Table 6 provides some

statistics of the programs and test cases in the Siemens test

suite.

The vertical axis represents the percentage of identified

faults that are located by examining an amount of code less

than or equal to the corresponding value on the horizontal

axis.

In Fig. 5(a), it can be noted that by examining 5% of the

code, the proposed technique can locate all faults in the print-

tokens program while using D* on basic blocks, only 80% of

the faults can be located. Performing edge ranking

considerably improves the results. For all seven programs,

edge ranking provides more information than pure basic block

ranking, thus more faults can be located by examining less

code.

TABLE 6

BRIEF DESCRIPTION OF SIEMENS TEST SUITE

B. Comparison with well-known techniques

In [24], empirical studies have shown that Dstar [37] is more

effective than Ochiai [32], which is in turn more effective than

O and OP [14], RBF [44], Crosstab-based [39], H3b and H3c

[41]. Hence, according to the previous section, the proposed

approach is suggested to be more effective than those

techniques. Therefore, it will be more convenient to compare

the proposed approach with some well-known techniques that

use different similarity coefficients to locate bugs.

 The proposed technique is compared to Tarantula [12],

SOBER [1], Cause Transition [33] and Liblit05[17].These

well-known methods are often chosen for comparison in

previous studies. To evaluate the effectiveness of a fault

localization approach, the number of detected faults and the

amount of code that needs to be examined manually to find the

root cause of the error has to be considered.

Fig. 6 shows the percentage of code that should be

examined manually in the source code to find the main cause

of failure compared with some well-known fault localization

techniques. For example, by examining 30% of program code,

82.1% of faults (faulty versions) can be detected.

Although the proposed technique does not perform best in

all cases, it is very promising in bug localization. When the

percentage of examined code is approximately above 30%, the

proposed technique can localize more faulty versions than the

other techniques.

Siemens

Programs

No.of

faulty

versions

Executabl

e LOC

No.of

test

cases

Description

Print_toke

ns
5 341-342 4130

Lexical

analyzer

Print_toke

n2
9 350–354 4115

Lexical

analyzer

Replace 27 508–515 5542
Pattern

Replacement

Schedule 5 291-294 2650
Priority

scheduler

Schedule2 9 261-263 2710
Priority

scheduler

Tcas 37 133-137 1608
Altitude

separation

Tot_info 20 272-274 1052
Information

measure

184 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2017

Fig. 5. Evaluation of the proposed approach results using Dstar with basic blocks and edge ranking for the seven Siemens programs

(a) (b)

(c) (d)

(e) (f)

(g)

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
 (

%
)

Percentage of program that needs to be
examined(%) for print-tokens program

Dstar with basic blocks

With edge ranking

0

20

40

60

80

100

0 10 20 30 40 50P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s(
%

)

Percentage of program that needs to be examined (%)
for print-tokens 2 program

Dstar with basic blocks

With edges ranking

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
 (

%
)

Percentage of program that needs to be
examined(%) for schedule1 program

Dstar with basic blocks

With edge ranking

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
 (

%
)

Percentage of program that needs to be examined (%)
for schedule 2 program

Dstar with basic blocks

With edges ranking

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
 (

%
)

Percentage of program that needs to be
examined(%) for tcas program

Dstar with basic blocks

With edges ranking

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
 (

%
)

Percentage of program that needs to be examined (%)
for tot-info program

Dstar with basic blocks

With edges ranking

0

50

100

0 10 20 30 40 50 60 70 80 90 100P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
(%

)

Percentage of program that needs to be
examined(%) for replace program

Dstar with basic blocks

With edges ranking

M. GABER et al.: GRAPH MINING FOR SOFTWARE FAULT LOCALIZATION 185

0

10

20

30

40

50

60

70

80

90

100

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

P
er

ce
n

ta
ge

 o
f

fa
u

lt
y

ve
rs

io
n

s
(%

)

Percentage of program that needs to be examined(%)

Proposed Technique

 Tarantula

SOBER

CT

Liblit05

VI. CONCLUSION AND FUTURE WORK

An edge-ranking approach is introduced in this paper to

localize faults in faulty software programs. The proposed

approach provides a context-aware understanding for located

faults using control flow graphs. It combines control flow

graphs with block coverage to calculate the suspicious score

for each basic block for successful and failed execution paths.

Then, all suspicious basic blocks are ranked in descending

order based on their suspiciousness. The final ranked list

should be inspected by developers to check the suspicious

blocks.

By following the ranked list of suspicious basic blocks that

are constructed using edges ranking, the number of inspected

basic blocks to find the fault (i.e., the search space), is

reduced.

Experiments are conducted to compare the effectiveness of

the proposed technique with existing representative techniques

using Siemens benchmark. Results of these experiments are

promising. The percentage of localized faulty versions is

measured against the percentage of code examined. In most

cases, the proposed technique outperforms Tarantula, SOBER,

CT and Liblit05. For instance, when the percentage of

examined code is 30%, the proposed technique can localize

nearly 81% of the faulty versions, outperforming the other

four techniques.

Although the proposed edge-ranking based fault localization

approach helps in locating many types of bugs and can provide

a context-aware understanding for these bugs, there are many

aspects that should be considered as future work. The

proposed edge-ranking based approach may be enhanced by

detecting multiple faults instead of pinpointing just the first

bug in the program. In addition, enhancing the proposed

method by detecting faults in huge software and not only

locating bugs in medium and small programs. Finally, we

suggest attempting to enhance the proposed method by

combining some other types of graphs (such as data-flow and

program dependence graphs) with spectrum-fault

localization approaches.

REFERENCES

[1] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:

A hypothesis testing-based approach, ”IEEE Trans. Software Eng.,

vol.32, no. 10, pp. 831–848, Oct. 2006.

[2] Goel, A. L., “Software Reliability Models: Assumptions, Limitations,

and Applicability”. IEEE Transactions on Software Engineering, vol.

SE-11, no. 12, pp.1411-1423 1985, DOI. 10.1109/TSE.1985.232177

[3] Xie, M., Yang, B.,” A study of the effect of imperfect debugging on

software development cost”. IEEE Transactions on Software

Engineering, vol. 29, no. 5, pp. 471-473, 2003, DOI:

10.1109/TSE.2003.1199075

[4] Agrawal, H., Horgan, J., London, S., Wong, W.,” Fault localization

using execution slices and Data flow tests. Proceedings of Sixth

International Symposium on Software Reliability Engineering”,

vol.ISSRE’95, pp143-151,1995,DOI:10.1109/ISSRE.1995.497652

[5] Collofello, J. S., Woodfield, S. N.,” Evaluating the effectiveness of

reliability-assurance techniques”. The Journal of Systems and Software,

vol. 9, no.3, pp.191-195, 1989, DOI: 10.1016/0164-1212(89)90039-3.

[6] Weiser, M., “Programmers use slices when debugging”.

Communications of the ACM, vol.25, no.7, pp.446-452, 1982

DOI:10.1145/358557.358577.

[7] Agrawal, H., Demillo, R. A., Spafford, E. H., “Debugging with dynamic

slicing and backtracking”. Software: Practice and Experience, vol. 23,

no.6, pp.589-616, 1993, DOI: 10.1002/spe.4380230603.

[8] Zhang, X., He, H., Gupta, N., Gupta, R., “Experimental evaluation of

using dynamic slices for fault location". International Workshop on

Automated and Algorithmic Debugging (AADEBUG 2005), pp.33-42,

2005, DOI: 10.1145/1085130.1085135

[9] Sterling, C. D., Olsson, R. A.,”Automated bug isolation via program

chipping. Software” – Practice and Experience, vol.37, no.10, pp. 1061-

1086, 2007, DOI: 10.1002/spe.798

[10] Renieres, M., Reiss, S. P., “Fault Localization with Nearest Neighbour

Queries”. Automated Software Engineering, pp.30-39, 2003,

DOI:10.1109/ASE.2003.1240292

[11] Xie, X., Chen, T. Y., Kuo, F.-C., Xu, B., “A theoretical analysis of the

risk evaluation formulas for spectrum-based fault localization”. ACM

Transactions on Software Engineering and Methodology, vol. 22 ,no.4,

1-40,2013, DOI : 10.1145/2522920.2522924

[12] Jones, J. A., Harrold, M. J., Stasko, J., “Visualization of test information

Fig. 5. The effectiveness of the proposed technique

186 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2017

to assist fault localization”. Proceedings of the 24th international

conference on Software engineering – ICSE '02, pp.467,2002,

DOI:10.1145/581339.581397

[13] Gemund, A. J. C. V., “An Evaluation of Similarity Coefficients for

Software Fault Localization”. Proceedings of the 12th Pacific Rim

International Symposium on Dependable Computing-PRDC '06, pp. 39-

46,2006, DOI:10.1109/PRDC.2006.18

[14] Naish, L., Lee, H. J., Ramamohanarao, K., “A model for spectra-based

software diagnosis”. ACM Transactions on Software Engineering and

Methodology, vol. 20, no.3, pp.1-32,2011,

DOI:10.1145/2000791.2000795

[15] Perez, A., Abreu, R., Wong, W. E., “A Survey on Fault Localization

Techniques”, 2004.

[16] Hsu, H. Y., Jones, J. A., Orso, A., “Rapid: Identifying bug signatures to

support debugging activities”. ASE 2008 -23rd IEEE/ACM International

Conference on Automated Software Engineering, Proceedings, pp. 439-

442,2008, DOI:10.1109/ASE.2008.68

[17] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., Jordan, M. I., “Scalable

statistical bug isolation”. ACM SIGPLAN Notices, vol. 40, no. 6, pp. 15,

2005, DOI:10.1145/1064978.1065014

[18] Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B.,”Statistical debugging

using compound Boolean predicates”. Proceedings of the 2007

international symposium on Software testing and analysis - ISSTA '07,

2007 DOI:10.1145/1273463.1273467

[19] Baah, G. K., Podgurski, A., Harrold, M. J., “The probabilistic program

dependence graph and its application to fault diagnosis”. IEEE

Transactions on Software Engineering, vol.36, no.4, pp. 528-545, 2010,

DOI: 10.1109/TSE.2009.87

[20] Yu, K., Lin, M., Gao, Q., Zhang, H., Zhang, X., “Locating faults using

multiple spectra-specific models”. Proceedings of the 2011 ACM

Symposium on Applied Computing - SAC '11, pp.1404-1410, 2011,

DOI: 10.1145/1982185.1982490

[21] Tiantian, W., Xiaohong, S., Peijun, M., Kechao, W., “Comprehension

oriented software fault location”. Proceedings of 2011 International

Conference on Computer Science and Network Technology, pp. 340 -

343, 2011, DOI: 10.1109/ICCSNT.2011.6181971

[22] Cheng, H., Lo, D., Zhou, Y., Wang, X., Yan, X., “Identifying bug

signatures using discriminative graph mining”. Proceedings of the

eighteenth international symposium on Software testing and analysis-

ISSTA '09, pp. 141, 2009, DOI:10.1145/1572272.1572290

[23] Ernst, M. D., Cockrell, J., Griswold, W. G., Notkin, D., “Dynamically

discovering likely program invariants to support program evolution.

IEEE Transactions on Software Engineering, vol.27, no. 2, 99-123,

2001, DOI:10.1109/32.908957

[24] Wong, W. E., Gao, R., Li, Y., Abreu, R., Wotawa, F.,”A survey on

software fault localization”. IEEE Transactions on Software

Engineering, vol.42, no. 8, pp. 707-740, 2016, DOI:

10.1109/TSE.2016.2521368

[25] Di Fatta, G., Leue, S., Stegantova, E., “Discriminative pattern mining in

software fault detection”. Proceedings of the 3rd international workshop

on Software quality assurance, pp. 62-69, 2006, DOI:

10.1145/1188895.1188910

[26] Liu, C., Yan, X., Yu, H., Han, J., Yu, P. S., “ Mining Behaviour Graphs

for "Backtrace" of Noncrashing Bugs”, Proceedings of the 2005 SIAM

International Conference on Data Mining, pp. 286-297, 2005, DOI:

10.1137/1.9781611972757.26

[27] Lo, D., Han, J., “Classification of Software Behaviors for Failure

Detection: A Discriminative Pattern Mining Approach”. Proceedings of

the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD '09, pp. 557-565, 2009, DOI:

10.1145/1557019.1557083

[28] Cheng, H., Yan, X., Han, J., Yu, P. S., “Direct Discriminative Pattern

Mining Classification Effective”, IEEE 24th International Conference on

Data Engineering, pp. 169-178, 2008, DOI:

10.1109/ICDE.2008.4497425

[29] Yan, X., Cheng, H., Han, J., Yu, P. S., “Mining significant graph

patterns by leap search”. Proceedings of the 2008 ACM SIGMOD Int.

conf. on Management of Data, pp. 433-444, 2008,

DOI:10.1145/1376616.1376662

[30] Eichinger, F., Böhm, K., Huber, M., “Mining edge-weighted call graphs

to localise software bugs”. Lecture Notes in Computer Science (LNCS)

5211 LNAI (PART 1), pp. 333-348, 2008, DOI: 10.1007/978-3-540-

87479-9_40

[31] Yu, Y., Jones, J. A., Harrold, M. J., “An empirical study of the effects of

test-suite reduction on fault localization”. Proceedings of the 13th

international conference on Software engineering - ICSE '08, 201, 2008,

DOI:10.1145/1368088.1368116

[32] Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A. J. C., “A

practical evaluation of spectrum based fault localization”. Journal of

Systems and Software”, vol. 82, no.11, pp. 1780-1792, 2009. DOI:

10.1016/j.jss.2009.06.035

[33] Cleve, H., Zeller, A., “Locating causes of program failures. Software

Engineering”, ICSE 2005.Proceedings. 27th International Conference,

pp. 342-351, 2005, DOI: 10.1109/ICSE.2005.1553577

[34] Zeller, A.,” Isolating cause-effect chains from computer programs”.

Proceedings of the tenth ACM SIGSOFT symposium on Foundations of

software engineering - SIGSOFT '02/FSE 10, pp.1.2002,

DOI:10.1145/587051.587053

[35] Wong, W. E., Qi, Y., “Effective program debugging based on execution

slices and inter-block data dependency”. Journal of Systems and

Software, vol.79, no.7, pp. 891-903, 2006,

DOI:10.1016/j.jss.2005.06.045

[36] Seung-Seok, C., Sung-Hyuk, C., Tappert, C. C., 2010. A “Survey of

Binary Similarity and Distance Measures”. Journal of Systemics,

Cybernetics & Informatics, vol.8, no.1, pp. 43-48, 2010.

[37] Wong, W. E., Debroy, V., Gao, R., Li, Y., “The DStar method for

effective software fault localization. IEEE Transactions on Reliability,

vol. 63, no.1, 290-308,2014, DOI:10.1109/TR.2013.2285319

[38] The Software Infrastructure Repository, [Online].Available:

https://sir.unl.edu/portal/index.html

[39] Wong, W. E., Debroy, V., Xu, D., “Towards better fault localization: A

crosstab-based statistical approach”. IEEE Transactions on Systems,

Man and Cybernetics Part C: Applications and Reviews, vol. 42, no. 3,

pp. 378-396, 2012, DOI:10.1109/TSMCC.2011.2118751

[40] Do, H., Elbaum, S., Rothermel, G., “Supporting controlled

experimentation with testing techniques: An infrastructure and its

potential impact”. Empirical Software Engineering, vol. 10, no. 4, pp.

405-435, 2005, DOI: 10.1007/s10664-005-3861-2

[41] Eric Wong, W., Debroy, V., Choi, B., “A family of code coverage-based

heuristics for effective fault localization.” Journal of Systems and

Software. vol.83, no. 2, pp. 188-

208,2010,DOI:10.1016/j.jss.2009.09.037

[42] Bookstein, A., Kulyukin, V. a., Raita, T, “Generalized Hamming

Distance”. Inf. Retr.,vol.5,no.4, pp.353-375, 2002, DOI:

10.1023/a:1020499411651

[43] Jones, J. J. a., Harrold, M. J. M., “Empirical evaluation of the tarantula

automatic fault localization technique”. Automated Software

Engineering, pp. 282-292,2005, DOI:10.1145/1101908.1101949

[44] W. E. Wong, V. Debroy, R. Golden, X. Xu and B. Thuraisingham,

“Effective Software Fault Localization using an RBF Neural Network,”

IEEE Transactions on Reliability, Volume 61, Number 1, pp. 149-169,

March 2012

M. GABER et al.: GRAPH MINING FOR SOFTWARE FAULT LOCALIZATION 187

https://doi.org/10.1109/ICSE.2005.1553577
https://sir.unl.edu/portal/index.html

Marwa Gaber Abd El-Wahab is

currently a Teaching Assistant at

Computer Science Department, Future

Academy, Cairo, Egypt. She received her

B.Sc. in Computer Science department,

Faculty of Computers and Information,

Helwan University, Cairo, Egypt. She is

currently a M.Sc. student at Computer

Science department, Faculty of Computers and Information,

Helwan University.

Amal Elsayed Aboutabl is currently an

Associate Professor at the Computer

Science Department, Faculty of

Computers and Information, Helwan

University, Cairo, Egypt. She received her

B.Sc. in Computer Science from the

American University in Cairo and both of

her M.Sc. and Ph.D. in Computer Science

from Cairo University. She worked for

IBM and ICL in Egypt for seven years. She was also a

Fulbright Scholar at the Department of Computer Science,

University of Virginia, USA. Her current research interests

include software engineering and natural language processing.

Wessam M.H. EL Behaidy is currently a

Teacher Assistant in faculty of Computers

and Information, Helwan University,

Cairo, Egypt. She received her B.Sc. is in

Computer Science, from faculty of

Computers and Information, Helwan

University, Cairo, Egypt in 2000. Also,

she earned her M.Sc. and Ph.D. in

Computer Science, Helwan University in 2004 and 2012

respectively. Her research interests also include structural

bioinformatics, protein structure prediction, machine learning,

and image processing. She published 6 papers in international

conferences and Springer.

188 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2017

